Statements (60)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:neural_networks
|
gptkbp:analyzes |
Decision boundary
|
gptkbp:based_on |
Linear threshold unit
|
gptkbp:can |
Linearly separable functions
|
gptkbp:can_be_combined_with |
Other algorithms
|
gptkbp:can_be_extended_by |
Multi-layer perceptron
|
gptkbp:consists_of |
Weights
Activation function Input layer |
gptkbp:developed_by |
gptkb:Frank_Rosenblatt
|
gptkbp:has_limitations |
Overfitting
Cannot solve XOR problem |
https://www.w3.org/2000/01/rdf-schema#label |
Perceptron
|
gptkbp:improves |
Regularization techniques
|
gptkbp:input_output |
Binary output
|
gptkbp:inspired_by |
Biological neurons
|
gptkbp:introduced_in |
gptkb:1958
|
gptkbp:is_a |
Single-layer neural network
|
gptkbp:is_described_as |
Learning theory
|
gptkbp:is_evaluated_by |
Accuracy
Precision Recall F1 score Confusion matrix Test set |
gptkbp:is_implemented_in |
gptkb:Tensor_Flow
gptkb:Py_Torch Various programming languages |
gptkbp:is_influenced_by |
Hebbian learning
|
gptkbp:is_part_of |
gptkb:Artificial_Intelligence
Predictive modeling Neural network architecture Supervised learning algorithms |
gptkbp:is_related_to |
Cognitive science
Deep learning Machine learning Feature extraction Statistical learning theory |
gptkbp:is_trained_in |
Gradient descent
|
gptkbp:is_used_in |
gptkb:robotics
Data mining Natural language processing Speech recognition Anomaly detection Medical diagnosis Pattern recognition Game AI Recommendation systems Financial forecasting Image recognition Time series prediction |
gptkbp:requires |
Training data
|
gptkbp:training |
Supervised learning
Stochastic gradient descent Batch learning Backpropagation (in multi-layer perceptrons) |
gptkbp:used_for |
Binary classification
|
gptkbp:uses |
Activation threshold
|
gptkbp:bfsParent |
gptkb:Ken_Mc_Culloch
|
gptkbp:bfsLayer |
6
|