Perceptron

GPTKB entity

Statements (60)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:analyzes Decision boundary
gptkbp:based_on Linear threshold unit
gptkbp:can Linearly separable functions
gptkbp:can_be_combined_with Other algorithms
gptkbp:can_be_extended_by Multi-layer perceptron
gptkbp:consists_of Weights
Activation function
Input layer
gptkbp:developed_by gptkb:Frank_Rosenblatt
gptkbp:has_limitations Overfitting
Cannot solve XOR problem
https://www.w3.org/2000/01/rdf-schema#label Perceptron
gptkbp:improves Regularization techniques
gptkbp:input_output Binary output
gptkbp:inspired_by Biological neurons
gptkbp:introduced_in gptkb:1958
gptkbp:is_a Single-layer neural network
gptkbp:is_described_as Learning theory
gptkbp:is_evaluated_by Accuracy
Precision
Recall
F1 score
Confusion matrix
Test set
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Py_Torch
Various programming languages
gptkbp:is_influenced_by Hebbian learning
gptkbp:is_part_of gptkb:Artificial_Intelligence
Predictive modeling
Neural network architecture
Supervised learning algorithms
gptkbp:is_related_to Cognitive science
Deep learning
Machine learning
Feature extraction
Statistical learning theory
gptkbp:is_trained_in Gradient descent
gptkbp:is_used_in gptkb:robotics
Data mining
Natural language processing
Speech recognition
Anomaly detection
Medical diagnosis
Pattern recognition
Game AI
Recommendation systems
Financial forecasting
Image recognition
Time series prediction
gptkbp:requires Training data
gptkbp:training Supervised learning
Stochastic gradient descent
Batch learning
Backpropagation (in multi-layer perceptrons)
gptkbp:used_for Binary classification
gptkbp:uses Activation threshold
gptkbp:bfsParent gptkb:Ken_Mc_Culloch
gptkbp:bfsLayer 6