Least Absolute Shrinkage and Selection Operator

GPTKB entity

Statements (31)
Predicate Object
gptkbp:instanceOf regression analysis method
gptkbp:abbreviation gptkb:LASSO
gptkbp:application feature selection
high-dimensional data
gptkbp:category supervised learning
linear model
gptkbp:effect shrinks some coefficients to zero
gptkbp:generalizes gptkb:fused_LASSO
gptkb:group_LASSO
https://www.w3.org/2000/01/rdf-schema#label Least Absolute Shrinkage and Selection Operator
gptkbp:introduced gptkb:Robert_Tibshirani
1996
gptkbp:limitation can select at most n variables if n < p
gptkbp:method gptkb:least_angle_regression
coordinate descent
gptkbp:objective minimize sum of squared errors plus L1 penalty
gptkbp:objective_function least squares with L1 penalty
gptkbp:penalty_type L1 norm
gptkbp:promotion sparse solutions
gptkbp:relatedTo gptkb:Elastic_Net
gptkb:Ridge_regression
gptkbp:solvedBy convex optimization
gptkbp:used_in gptkb:machine_learning
statistics
gptkbp:usedFor regularization
variable selection
preventing overfitting
gptkbp:bfsParent gptkb:Lasso_regression
gptkb:Lasso_Regression
gptkb:LASSO
gptkbp:bfsLayer 6