lasso regression

GPTKB entity

Statements (33)
Predicate Object
gptkbp:instanceOf statistical analysis
regression analysis method
gptkbp:alsoKnownAs gptkb:Least_Absolute_Shrinkage_and_Selection_Operator
gptkbp:application gptkb:signal_processing
finance
genomics
image analysis
gptkbp:feature can shrink some coefficients to zero
performs feature selection
gptkbp:form minimize (1/2n)||y - Xβ||^2_2 + λ||β||_1
https://www.w3.org/2000/01/rdf-schema#label lasso regression
gptkbp:hyperparameter lambda (regularization parameter)
gptkbp:implementedIn gptkb:MATLAB
gptkb:scikit-learn
R
gptkbp:introduced gptkb:Robert_Tibshirani
gptkbp:introducedIn 1996
gptkbp:limitation can select at most n variables if n < p
can be unstable with highly correlated predictors
gptkbp:objective minimize sum of squared errors plus lambda times sum of absolute values of coefficients
gptkbp:penalty L1 norm
gptkbp:relatedTo gptkb:elastic_net
ridge regression
gptkbp:solvedBy gptkb:least_angle_regression_(LARS)
coordinate descent
subgradient methods
gptkbp:usedFor regularization
variable selection
preventing overfitting
gptkbp:usedIn gptkb:machine_learning
statistics
gptkbp:bfsParent gptkb:Regression_analysis
gptkbp:bfsLayer 6