LASSO

GPTKB entity

Statements (29)
Predicate Object
gptkbp:instanceOf regression analysis method
gptkbp:alternativeName L1 regularization
gptkbp:contrastsWith Ridge regression (L2 regularization)
gptkbp:doi 10.1111/j.2517-6161.1996.tb02080.x
gptkbp:effect performs feature selection
shrinks some coefficients to zero
gptkbp:field gptkb:machine_learning
data science
statistics
gptkbp:fullName gptkb:Least_Absolute_Shrinkage_and_Selection_Operator
https://www.w3.org/2000/01/rdf-schema#label LASSO
gptkbp:hyperparameter regularization parameter (lambda)
gptkbp:introduced gptkb:Robert_Tibshirani
gptkbp:introducedIn 1996
gptkbp:limitation can select at most n variables if n < p
biased estimates for large coefficients
gptkbp:penalty L1 norm
gptkbp:publishedIn gptkb:Journal_of_the_Royal_Statistical_Society,_Series_B
gptkbp:reduces sum of squared errors plus L1 penalty
gptkbp:relatedTo gptkb:Elastic_Net
gptkb:Ridge_regression
gptkbp:solvedBy gptkb:least_angle_regression
coordinate descent
subgradient methods
gptkbp:usedFor regression
regularization
variable selection
gptkbp:bfsParent gptkb:Boruta
gptkbp:bfsLayer 5