gptkbp:instance_of
|
gptkb:machine_learning
|
gptkbp:built
|
Containerization
|
gptkbp:developed_by
|
gptkb:Google
|
gptkbp:has_community
|
gptkb:Kubeflow_Community
gptkb:open-source_software
|
gptkbp:has_component
|
gptkb:KFServing
gptkb:Kubeflow_Pipelines
Metadata Store
Katib
Training Operators
Central Dashboard
Notebook Servers
Pipeline UI
|
gptkbp:has_documentation
|
Official Documentation
|
gptkbp:has_features
|
gptkb:user_interface
gptkb:Data_Analytics
REST API
CLI Tools
|
gptkbp:has_integration_with
|
gptkb:Grafana
gptkb:Jupyter_Notebooks
gptkb:Prometheus
gptkb:board_game
gptkb:Argo_Workflows
|
gptkbp:hosted_by
|
gptkb:Git_Hub
|
https://www.w3.org/2000/01/rdf-schema#label
|
Kubeflow
|
gptkbp:includes
|
gptkb:Pipeline
gptkb:KFServing
gptkb:Kubeflow_Pipelines
Katib
Training Operators
Katib for hyperparameter tuning
KFServing for model serving
|
gptkbp:is_adopted_by
|
gptkb:educational_institutions
Enterprises
Research Institutions
Startups
|
gptkbp:is_available_on
|
gptkb:Docker_Hub
gptkb:Git_Hub
|
gptkbp:is_compatible_with
|
Cloud Providers
On-Premises Deployments
CI/ CD Tools
|
gptkbp:is_designed_for
|
Machine Learning Workflows
End-to-End ML Workflows
|
gptkbp:is_open_source
|
gptkb:True
|
gptkbp:is_optimized_for
|
gptkb:collaboration
Scalability
Reproducibility
|
gptkbp:is_part_of
|
gptkb:Cloud_Native_Computing_Foundation
Cloud Native Ecosystem
AI/ ML Ecosystem
|
gptkbp:is_promoted_by
|
gptkb:Cloud_Native_Community
gptkb:Cloud_Native_Computing_Foundation
Machine Learning Community
Kubernetes Community
|
gptkbp:is_scalable
|
gptkb:True
|
gptkbp:is_supported_by
|
gptkb:open-source_software
Community Contributions
Corporate Sponsorships
Cloud Providers
|
gptkbp:is_used_by
|
Data Scientists
Machine Learning Engineers
|
gptkbp:is_used_for
|
gptkb:Data_Visualization
Model Evaluation
Model Training
Feature Engineering
Model Deployment
Data Preparation
|
gptkbp:latest_version
|
1.5.0
|
gptkbp:license
|
Apache License 2.0
|
gptkbp:notable_contributor
|
Open Source Contributors
|
gptkbp:provides
|
gptkb:Hyperparameter_Tuning
Machine Learning Pipelines
Model Serving
Experiment Tracking
Pipeline for ML workflows
|
gptkbp:release_date
|
gptkb:2017
|
gptkbp:released
|
Regular Releases
|
gptkbp:supports
|
gptkb:Tensor_Flow
gptkb:MXNet
gptkb:Py_Torch
Multi-Cloud Deployments
On-Premise Deployments
|
gptkbp:tutorials
|
Online Tutorials
|
gptkbp:use_case
|
gptkb:Hyperparameter_Tuning
Model Evaluation
Model Training
Deployment Automation
Monitoring and Logging
Data Preparation
Model Serving
Experiment Tracking
|
gptkbp:uses
|
gptkb:Kubernetes
|
gptkbp:written_in
|
gptkb:Go
|
gptkbp:bfsParent
|
gptkb:Kubernetes
gptkb:Py_Torch
|
gptkbp:bfsLayer
|
4
|