Kubeflow

GPTKB entity

Statements (96)
Predicate Object
gptkbp:instance_of gptkb:machine_learning
gptkbp:built Containerization
gptkbp:developed_by gptkb:Google
gptkbp:has_community gptkb:Kubeflow_Community
gptkb:open-source_software
gptkbp:has_component gptkb:KFServing
gptkb:Kubeflow_Pipelines
Metadata Store
Katib
Training Operators
Central Dashboard
Notebook Servers
Pipeline UI
gptkbp:has_documentation Official Documentation
gptkbp:has_features gptkb:user_interface
gptkb:Data_Analytics
REST API
CLI Tools
gptkbp:has_integration_with gptkb:Grafana
gptkb:Jupyter_Notebooks
gptkb:Prometheus
gptkb:board_game
gptkb:Argo_Workflows
gptkbp:hosted_by gptkb:Git_Hub
https://www.w3.org/2000/01/rdf-schema#label Kubeflow
gptkbp:includes gptkb:Pipeline
gptkb:KFServing
gptkb:Kubeflow_Pipelines
Katib
Training Operators
Katib for hyperparameter tuning
KFServing for model serving
gptkbp:is_adopted_by gptkb:educational_institutions
Enterprises
Research Institutions
Startups
gptkbp:is_available_on gptkb:Docker_Hub
gptkb:Git_Hub
gptkbp:is_compatible_with Cloud Providers
On-Premises Deployments
CI/ CD Tools
gptkbp:is_designed_for Machine Learning Workflows
End-to-End ML Workflows
gptkbp:is_open_source gptkb:True
gptkbp:is_optimized_for gptkb:collaboration
Scalability
Reproducibility
gptkbp:is_part_of gptkb:Cloud_Native_Computing_Foundation
Cloud Native Ecosystem
AI/ ML Ecosystem
gptkbp:is_promoted_by gptkb:Cloud_Native_Community
gptkb:Cloud_Native_Computing_Foundation
Machine Learning Community
Kubernetes Community
gptkbp:is_scalable gptkb:True
gptkbp:is_supported_by gptkb:open-source_software
Community Contributions
Corporate Sponsorships
Cloud Providers
gptkbp:is_used_by Data Scientists
Machine Learning Engineers
gptkbp:is_used_for gptkb:Data_Visualization
Model Evaluation
Model Training
Feature Engineering
Model Deployment
Data Preparation
gptkbp:latest_version 1.5.0
gptkbp:license Apache License 2.0
gptkbp:notable_contributor Open Source Contributors
gptkbp:provides gptkb:Hyperparameter_Tuning
Machine Learning Pipelines
Model Serving
Experiment Tracking
Pipeline for ML workflows
gptkbp:release_date gptkb:2017
gptkbp:released Regular Releases
gptkbp:supports gptkb:Tensor_Flow
gptkb:MXNet
gptkb:Py_Torch
Multi-Cloud Deployments
On-Premise Deployments
gptkbp:tutorials Online Tutorials
gptkbp:use_case gptkb:Hyperparameter_Tuning
Model Evaluation
Model Training
Deployment Automation
Monitoring and Logging
Data Preparation
Model Serving
Experiment Tracking
gptkbp:uses gptkb:Kubernetes
gptkbp:written_in gptkb:Go
gptkbp:bfsParent gptkb:Kubernetes
gptkb:Py_Torch
gptkbp:bfsLayer 4