KFServing

GPTKB entity

Statements (113)
Predicate Object
gptkbp:instance_of gptkb:Model
gptkb:open-source_software
gptkbp:built gptkb:Kubernetes
Kubernetes resources
gptkbp:constructed_in high availability
gptkbp:developed_by gptkb:Go_programming_language
gptkb:Kubeflow_community
gptkbp:enables canary deployments
real-time predictions
logging and monitoring
serverless inference
gptkbp:has community support
custom resource definitions
active contributors
gptkbp:hosted_by gptkb:Git_Hub
https://www.w3.org/2000/01/rdf-schema#label KFServing
gptkbp:integrates_with gptkb:Kubernetes
Istio for traffic management
gptkbp:is_available_on gptkb:Git_Hub
cloud platforms
gptkbp:is_compatible_with gptkb:Kubeflow_Pipelines
various data sources
data pipelines
CI/ CD pipelines
gptkbp:is_designed_for cloud-native applications
production environments
gptkbp:is_designed_to reduce operational complexity
simplify model deployment
gptkbp:is_documented_in official documentation
Kubeflow documentation
gptkbp:is_effective_against real-time inference
gptkbp:is_focused_on model serving efficiency
gptkbp:is_integrated_with logging tools
monitoring tools
alerting systems
Kubeflow Training
gptkbp:is_open_source gptkb:true
gptkbp:is_optimized_for low-latency inference
Kubernetes environments
gptkbp:is_part_of MLOps practices
Kubeflow ecosystem
AI/ ML solutions
AI/ ML workflows
cloud-native AI solutions
MLOps workflow
gptkbp:is_promoted_by meetups
hackathons
Kubeflow conferences
gptkbp:is_scalable gptkb:true
large datasets
gptkbp:is_supported_by workshops
community forums
webinars
online tutorials
major cloud providers
cloud-native technologies
Kubernetes operators
gptkbp:is_tested_for unit tests
integration tests
gptkbp:is_used_by data scientists
ML engineers
machine learning engineers
Dev Ops teams
gptkbp:is_used_for real-time analytics
AI applications
model deployment
model management
model serving
gptkbp:is_used_in enterprise applications
production environments
gptkbp:is_utilized_by research institutions
startups
gptkbp:offers automatic scaling
gptkbp:provides predictive analytics
automatic scaling
model versioning
logging and monitoring
traffic splitting
canary rollouts
model health checks
model rollback capabilities
model serving lifecycle management
model serving templates
predictive serving capabilities
preprocessing and postprocessing capabilities
RESTful API for inference
gptkbp:purpose serving machine learning models
gptkbp:suitable_for large-scale deployments
gptkbp:supports gptkb:Tensor_Flow
gptkb:g_RPC
gptkb:Py_Torch
gptkb:Oni
gptkb:Scikit-learn
data preprocessing
GPU acceleration
REST APIs
custom metrics
multiple frameworks
model monitoring
ONNX models
multiple machine learning frameworks
batch predictions
Scikit-learn models
multi-model serving
A/ B testing
Tensor Flow models
Py Torch models
g RPC for inference
gptkbp:uses gptkb:Knative
Kubernetes for deployment
gptkbp:written_in gptkb:Go
gptkbp:bfsParent gptkb:Kubeflow
gptkbp:bfsLayer 5