gptkbp:instanceOf
|
machine learning workflow tool
|
gptkbp:category
|
gptkb:MLOps
gptkb:machine_learning
workflow automation
|
gptkbp:developedBy
|
gptkb:Kubeflow_community
|
gptkbp:documentation
|
https://www.kubeflow.org/docs/components/pipelines/
|
gptkbp:firstReleased
|
2018
|
gptkbp:hasComponent
|
gptkb:Pipeline_UI
SDK
Artifact store
Backend
Metadata store
Orchestrator
|
https://www.w3.org/2000/01/rdf-schema#label
|
Kubeflow Pipelines
|
gptkbp:integratesWith
|
gptkb:AWS_SageMaker
gptkb:TensorFlow
gptkb:PyTorch
gptkb:scikit-learn
gptkb:Azure_ML
gptkb:Google_Cloud_AI_Platform
gptkb:Argo_Workflows
gptkb:MLflow
|
gptkbp:latestReleaseVersion
|
v2.0.0
|
gptkbp:license
|
gptkb:Apache_License_2.0
|
gptkbp:openSource
|
true
|
gptkbp:partOf
|
gptkb:Kubeflow
|
gptkbp:programmingLanguage
|
gptkb:Python
gptkb:Go
|
gptkbp:repository
|
https://github.com/kubeflow/pipelines
|
gptkbp:runsOn
|
gptkb:Kubernetes
|
gptkbp:supports
|
gptkb:data_visualization
custom components
experiment tracking
machine learning workflows
pipeline versioning
component reuse
artifact tracking
containerized components
parameterized pipelines
pipeline caching
pipeline comparison
pipeline debugging
pipeline metrics
pipeline scheduling
pipeline sharing
|
gptkbp:usedFor
|
orchestrating ML workflows
reproducible ML experiments
|
gptkbp:website
|
https://www.kubeflow.org/
|
gptkbp:bfsParent
|
gptkb:Vertex_AI
gptkb:AI_Platform_Pipelines
|
gptkbp:bfsLayer
|
5
|