Kubeflow Pipelines

GPTKB entity

Statements (57)
Predicate Object
gptkbp:instance_of gptkb:software_framework
gptkbp:bfsLayer 4
gptkbp:bfsParent gptkb:Kubeflow
gptkb:Google_Cloud_AI_Platform_Pipelines
gptkb:Google_Cloud_AI_Platform_Pipelines_Jobs
gptkbp:allows Reusability of components
gptkbp:can_be_extended_by gptkb:battle
Custom components
gptkbp:community_support gptkb:battle
gptkbp:deployment On-premises environments
Various cloud platforms
gptkbp:design gptkb:battle
gptkbp:developed_by gptkb:Job_Search_Engine
gptkbp:enables CI/ CD for ML models
gptkbp:features Experiment tracking
Parameterization of pipelines
Visualization of pipeline runs
https://www.w3.org/2000/01/rdf-schema#label Kubeflow Pipelines
gptkbp:includes UI for managing pipelines
gptkbp:integrates_with gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkb:park
gptkbp:is_compatible_with gptkb:Kubeflow_Katib
gptkb:Kubeflow_Pipelines_SDK
gptkb:Kubeflow_Serving
Kubeflow Training
gptkbp:is_designed_for Building and deploying machine learning workflows
gptkbp:is_documented_in Kubeflow documentation
gptkbp:is_open_source gptkb:theorem
gptkbp:is_part_of Kubeflow ecosystem
gptkbp:is_scalable gptkb:battle
gptkbp:is_supported_by Kubernetes community
Open source contributors
gptkbp:is_used_by Data scientists
ML engineers
Dev Ops teams
gptkbp:is_used_for Model evaluation
Model training
Model deployment
gptkbp:latest_version gptkb:battle
gptkbp:operational_area gptkb:battle
gptkbp:provides RESTAPI
Pipeline orchestration
Logging and monitoring capabilities
Component marketplace
SDK for Python
gptkbp:supports Data versioning
Custom components
Hyperparameter tuning
Containerized applications
Distributed training
Artifact management
Multi-step workflows
gptkbp:tutorials gptkb:battle
gptkbp:uses gptkb:fortification
gptkbp:written_in gptkb:Library
gptkb:Go