Triton Inference Server

GPTKB entity

Statements (60)
Predicate Object
gptkbp:instance_of gptkb:Amazon_Web_Services
gptkbp:can_be_extended_by custom backends
gptkbp:can_handle batch requests
gptkbp:deployment cloud environments
edge devices
gptkbp:developed_by gptkb:NVIDIA
gptkbp:has community support
https://www.w3.org/2000/01/rdf-schema#label Triton Inference Server
gptkbp:is_available_on gptkb:Git_Hub
gptkbp:is_compatible_with gptkb:Kubernetes
gptkb:Docker
various programming languages
gptkbp:is_designed_for low latency
high throughput
AI inference tasks
scalable inference
gptkbp:is_designed_to simplify inference workflows
gptkbp:is_documented_in NVIDIA documentation
gptkbp:is_integrated_with gptkb:NVIDIA_GPUs
NVIDIA software stack
gptkbp:is_open_source gptkb:true
gptkbp:is_optimized_for NVIDIA hardware
gptkbp:is_part_of gptkb:NVIDIA_AI_platform
AI model deployment solutions
gptkbp:is_used_by gptkb:researchers
data scientists
machine learning engineers
gptkbp:is_used_for real-time inference
batch inference
gptkbp:is_used_in AI applications
production environments
gptkbp:offers HTTP/g RPC APIs
gptkbp:provides API documentation
load balancing
metrics and logging
performance optimization
user-friendly interface
model versioning
model serving
gptkbp:released_in gptkb:2020
gptkbp:runs_through gptkb:NVIDIA_GPUs
CPUs
gptkbp:suitable_for large scale deployments
gptkbp:supports gptkb:Tensor_Flow
gptkb:Tensor_RT
gptkb:Py_Torch
gptkb:Oni
multiple frameworks
model optimization
model monitoring
Python API
C++ API
model repository
ensemble models
model metadata
dynamic batching
multi-model serving
A/ B testing
gptkbp:bfsParent gptkb:DGX_A100
gptkbp:bfsLayer 6