Gradient Boosting Machines

GPTKB entity

Statements (53)
Predicate Object
gptkbp:instance_of gptkb:machine_learning
gptkbp:based_on Boosting
gptkbp:can_be_combined_with Weak Learners
gptkbp:can_handle Missing Values
gptkbp:challenges gptkb:Hyperparameter_Tuning
Model Complexity
Overfitting
Computational Cost
gptkbp:developed_by Friedman
gptkbp:has Learning Rate
Number of Estimators
Subsample Rate
Max Depth
https://www.w3.org/2000/01/rdf-schema#label Gradient Boosting Machines
gptkbp:improves Model Accuracy
gptkbp:is_compared_to gptkb:Support_Vector_Machines
gptkb:Random_Forests
gptkb:neural_networks
gptkb:Ada_Boost
gptkbp:is_evaluated_by Cross-Validation
Confusion Matrix
ROC Curve
Precision-Recall Curve
gptkbp:is_implemented_in gptkb:XGBoost
gptkb:Cat_Boost
gptkb:Light_GBM
gptkb:Scikit-learn
gptkbp:is_known_for Flexibility
High Performance
Interpretability
Feature Importance
Handling Non-linearity
gptkbp:is_popular_among gptkb:researchers
Data Scientists
Statisticians
Machine Learning Practitioners
gptkbp:is_popular_in Kaggle Competitions
gptkbp:is_used_in gptkb:E-commerce
gptkb:Natural_Language_Processing
gptkb:advertising
Finance
Healthcare
Image Processing
gptkbp:reduces Bias
Variance
gptkbp:requires Tuning of Hyperparameters
gptkbp:runs_through gptkb:Yes
gptkbp:sensitivity gptkb:Outliers
gptkbp:used_for gptkb:Regression
Classification
gptkbp:uses gptkb:Decision_Trees
gptkbp:bfsParent gptkb:AT&_T_Bell_Laboratories
gptkbp:bfsLayer 5