Properties (54)
Predicate | Object |
---|---|
gptkbp:instanceOf |
gptkb:Company
|
gptkbp:basedOn |
Decision Trees
|
gptkbp:canBe |
Yes
|
gptkbp:developedBy |
Friedman_et_al.
|
gptkbp:has |
Learning Rate
Number of Estimators Regularization Parameters Subsample Rate Max_Depth |
https://www.w3.org/2000/01/rdf-schema#label |
Gradient Boosting Machines
|
gptkbp:improves |
Model_Accuracy
|
gptkbp:isAvenueFor |
Ensemble Learning
|
gptkbp:isEvaluatedBy |
Cross-Validation
F1 Score Confusion Matrix ROC_Curve Precision-Recall Curve |
gptkbp:isFacilitatedBy |
Missing Values
|
gptkbp:isLocatedIn |
gptkb:LightGBM
XGBoost CatBoost |
gptkbp:isPartOf |
gptkb:Support_Vector_Machines
gptkb:Random_Forests gptkb:AdaBoost Neural Networks |
gptkbp:isPopularFor |
Winning_Data_Science_Competitions
|
gptkbp:isPopularIn |
Kaggle Competitions
|
gptkbp:isStudiedIn |
Outliers
|
gptkbp:isTrainedIn |
Grid Search
Bayesian Optimization Random_Search |
gptkbp:isUsedFor |
Large Datasets
Feature Importance Partial Dependence Plots SHAP Values Weak Learners |
gptkbp:isUsedIn |
gptkb:Recommendation_Systems
Finance Fraud Detection Healthcare Image Processing Marketing Natural Language Processing Risk Assessment Predictive Modeling Customer Segmentation Churn Prediction Time_Series_Forecasting |
gptkbp:reduces |
Bias
Variance |
gptkbp:requires |
Hyperparameter_Tuning
|
gptkbp:usedFor |
Classification
Regression |
gptkbp:uses |
Gradient Descent
|