Gradient Boosting Machines

GPTKB entity

Properties (54)
Predicate Object
gptkbp:instanceOf gptkb:Company
gptkbp:basedOn Decision Trees
gptkbp:canBe Yes
gptkbp:developedBy Friedman_et_al.
gptkbp:has Learning Rate
Number of Estimators
Regularization Parameters
Subsample Rate
Max_Depth
https://www.w3.org/2000/01/rdf-schema#label Gradient Boosting Machines
gptkbp:improves Model_Accuracy
gptkbp:isAvenueFor Ensemble Learning
gptkbp:isEvaluatedBy Cross-Validation
F1 Score
Confusion Matrix
ROC_Curve
Precision-Recall Curve
gptkbp:isFacilitatedBy Missing Values
gptkbp:isLocatedIn gptkb:LightGBM
XGBoost
CatBoost
gptkbp:isPartOf gptkb:Support_Vector_Machines
gptkb:Random_Forests
gptkb:AdaBoost
Neural Networks
gptkbp:isPopularFor Winning_Data_Science_Competitions
gptkbp:isPopularIn Kaggle Competitions
gptkbp:isStudiedIn Outliers
gptkbp:isTrainedIn Grid Search
Bayesian Optimization
Random_Search
gptkbp:isUsedFor Large Datasets
Feature Importance
Partial Dependence Plots
SHAP Values
Weak Learners
gptkbp:isUsedIn gptkb:Recommendation_Systems
Finance
Fraud Detection
Healthcare
Image Processing
Marketing
Natural Language Processing
Risk Assessment
Predictive Modeling
Customer Segmentation
Churn Prediction
Time_Series_Forecasting
gptkbp:reduces Bias
Variance
gptkbp:requires Hyperparameter_Tuning
gptkbp:usedFor Classification
Regression
gptkbp:uses Gradient Descent