Support Vector Machines

GPTKB entity

Statements (53)
Predicate Object
gptkbp:instanceOf gptkb:model
gptkbp:abbreviation gptkb:SVM
gptkbp:advantage effective in high dimensional spaces
memory efficient
robust to overfitting (with proper regularization)
works with non-linear data (using kernel trick)
gptkbp:basedOn learning theory
gptkbp:canBe linear kernel
polynomial kernel
radial basis function kernel
sigmoid kernel
gptkbp:hasApplication bioinformatics
diagnosis
financial forecasting
image recognition
handwriting recognition
face detection
text classification
spam detection
gptkbp:hasConcept hyperplane
maximizing margin
support vectors
https://www.w3.org/2000/01/rdf-schema#label Support Vector Machines
gptkbp:implementedIn gptkb:TensorFlow
gptkb:LIBSVM
gptkb:Weka
gptkb:scikit-learn
R
gptkbp:introduced gptkb:Alexey_Chervonenkis
gptkb:Vladimir_Vapnik
gptkbp:introducedIn 1990s
gptkbp:limitation difficult to interpret
not suitable for very large datasets
requires careful parameter tuning
sensitive to feature scaling
gptkbp:relatedTo gptkb:machine_learning
gptkb:Lagrange_multipliers
binary classification
pattern recognition
quadratic programming
C parameter
hard margin
kernel trick
large margin classifier
multiclass classification
nonlinear classification
soft margin
structural risk minimization
gptkbp:usedFor gptkb:dictionary
regression
outlier detection
gptkbp:bfsParent gptkb:Journal_of_Machine_Learning_Research
gptkbp:bfsLayer 5