Support Vector Machines

GPTKB entity

Statements (53)
Predicate Object
gptkbp:instance_of gptkb:machine_learning
gptkbp:analyzes Decision Boundary
gptkbp:based_on Statistical Learning Theory
gptkbp:can_be_combined_with Ensemble Methods
gptkbp:can_be_extended_by Support Vector Regression
gptkbp:can_be_used_to Polynomial Kernel
Radial Basis Function Kernel
Linear Kernel
gptkbp:can_handle Non-linear data
gptkbp:developed_by gptkb:Vladimir_Vapnik
gptkbp:features_works_by Finding hyperplane
gptkbp:has_function C (Regularization parameter)
Gamma (Kernel coefficient)
https://www.w3.org/2000/01/rdf-schema#label Support Vector Machines
gptkbp:is_challenged_by gptkb:Hyperparameter_Tuning
Computational Complexity
Overfitting
Underfitting
Class Imbalance
Interpretability
Noise in Data
Feature Selection
gptkbp:is_evaluated_by Accuracy
F1 Score
Grid Search
Precision
Recall
Cross-validation
gptkbp:is_implemented_in gptkb:MATLAB
gptkb:LIBSVM
gptkb:Scikit-learn
gptkbp:is_popular_in gptkb:Biology
Bioinformatics
Image Recognition
gptkbp:is_related_to gptkb:Decision_Trees
gptkb:Random_Forests
gptkb:neural_networks
gptkbp:is_trained_in Labeled Data
gptkbp:is_used_in gptkb:Natural_Language_Processing
gptkb:advertising
gptkb:robotics
Finance
Healthcare
Manufacturing
gptkbp:requires Feature scaling
gptkbp:security High-dimensional data
gptkbp:sensitivity gptkb:Outliers
gptkbp:suitable_for Large Datasets
gptkbp:used_for gptkb:Regression
Classification
gptkbp:uses Kernel Trick
gptkbp:bfsParent gptkb:machine_learning
gptkbp:bfsLayer 3