Random Forests

GPTKB entity

Statements (35)
Predicate Object
gptkbp:instanceOf gptkb:model
ensemble learning method
gptkbp:advantage can be computationally intensive
less interpretable than single decision trees
robust to noise
works with categorical and numerical data
gptkbp:basedOn decision trees
gptkbp:category supervised learning
non-parametric method
gptkbp:citation gptkb:Breiman,_L._(2001)._Random_Forests._Machine_Learning,_45(1),_5-32.
gptkbp:developedBy gptkb:Leo_Breiman
gptkbp:handles high-dimensional data
missing values
https://www.w3.org/2000/01/rdf-schema#label Random Forests
gptkbp:hyperparameter maximum tree depth
minimum samples per leaf
number of features per split
number of trees
gptkbp:implementedIn gptkb:Spark_MLlib
gptkb:Weka
gptkb:scikit-learn
R
gptkbp:improves prediction accuracy
gptkbp:introducedIn 2001
gptkbp:provides feature importance
gptkbp:reduces overfitting
gptkbp:relatedTo gptkb:AdaBoost
gradient boosting
bagging classifier
gptkbp:technique bagging
gptkbp:usedFor gptkb:dictionary
regression
feature selection
gptkbp:bfsParent gptkb:Journal_of_Machine_Learning_Research
gptkbp:bfsLayer 5