Random Forests

GPTKB entity

Properties (62)
Predicate Object
gptkbp:instanceOf gptkb:Architect
gptkbp:aimsTo prediction accuracy
gptkbp:basedOn bootstrap aggregating
gptkbp:can_be for faster computation
gptkbp:composedOf multiple decision trees
gptkbp:evaluates high-dimensional spaces
https://www.w3.org/2000/01/rdf-schema#label Random Forests
gptkbp:is_a supervised learning algorithm
gptkbp:is_available_in tree structures
gptkbp:is_designed_to outliers
gptkbp:is_evaluated_by cross-validation
single decision trees
gptkbp:is_popular_among data science
gptkbp:is_recognized_for MATLAB
R
scikit-learn
gptkbp:is_used_in healthcare
finance
marketing
urban planning
environmental monitoring
geospatial analysis
natural language processing
network security
quality control
risk assessment
supply chain optimization
bioinformatics
feature selection
customer segmentation
climate modeling
credit scoring
fraud detection
image classification
predictive maintenance
real-time predictions
sales forecasting
video analysis
time series forecasting
classification
anomaly detection
image segmentation
sports analytics
transportation modeling
regression
social media analysis
text classification
telecommunications analysis
customer churn prediction
e-commerce recommendations
energy consumption prediction
gptkbp:isFacilitatedBy missing values
categorical variables
gptkbp:isUsedFor other algorithms
gptkbp:powerOutput probability estimates
gptkbp:produces gptkb:Leo_Breiman
gptkbp:provides feature importance
gptkbp:reduces overfitting
gptkbp:requires hyperparameter tuning
gptkbp:sensors class imbalance
gptkbp:suitableFor large datasets
gptkbp:uses bagging technique