Decision Trees

GPTKB entity

Statements (53)
Predicate Object
gptkbp:instance_of gptkb:machine_learning
gptkbp:analyzes Flowchart
gptkbp:based_on Tree Structure
gptkbp:benefits Easy to interpret
Handles both numerical and categorical data
Prone to overfitting
Sensitive to noisy data
gptkbp:can_be_combined_with gptkb:Random_Forests
Boosting
Bagging
gptkbp:can_be_used_in gptkb:Risk_Management
Predictive Modeling
Customer Segmentation
gptkbp:can_handle Missing Values
gptkbp:created_by gptkb:J._Ross_Quinlan
gptkbp:evaluates Accuracy
F1 Score
Precision
Recall
gptkbp:first_introduced gptkb:1986
gptkbp:has_programs Supervised Learning
https://www.w3.org/2000/01/rdf-schema#label Decision Trees
gptkbp:input_output Continuous Values
Discrete Values
gptkbp:is_enhanced_by Pruning
Ensemble Methods
gptkbp:is_evaluated_by Cross-Validation
Confusion Matrix
ROC Curve
AUC Score
gptkbp:is_implemented_in gptkb:Java
gptkb:C++
gptkb:Python
gptkb:R
gptkbp:is_often_compared_to gptkb:Support_Vector_Machines
gptkb:Logistic_Regression
gptkb:neural_networks
k-Nearest Neighbors
gptkbp:is_often_used_in gptkb:advertising
Finance
Healthcare
gptkbp:is_popular_in gptkb:Artificial_Intelligence
Data Mining
Academic Research
Industry Applications
gptkbp:requires Training Data
Feature Selection
gptkbp:suitable_for High-Dimensional Data
Unbalanced Datasets
gptkbp:used_for gptkb:Regression
Classification
gptkbp:bfsParent gptkb:machine_learning
gptkbp:bfsLayer 3