gptkbp:instance_of
|
gptkb:machine_learning
|
gptkbp:analyzes
|
Flowchart
|
gptkbp:based_on
|
Tree Structure
|
gptkbp:benefits
|
Easy to interpret
Handles both numerical and categorical data
Prone to overfitting
Sensitive to noisy data
|
gptkbp:can_be_combined_with
|
gptkb:Random_Forests
Boosting
Bagging
|
gptkbp:can_be_used_in
|
gptkb:Risk_Management
Predictive Modeling
Customer Segmentation
|
gptkbp:can_handle
|
Missing Values
|
gptkbp:created_by
|
gptkb:J._Ross_Quinlan
|
gptkbp:evaluates
|
Accuracy
F1 Score
Precision
Recall
|
gptkbp:first_introduced
|
gptkb:1986
|
gptkbp:has_programs
|
Supervised Learning
|
https://www.w3.org/2000/01/rdf-schema#label
|
Decision Trees
|
gptkbp:input_output
|
Continuous Values
Discrete Values
|
gptkbp:is_enhanced_by
|
Pruning
Ensemble Methods
|
gptkbp:is_evaluated_by
|
Cross-Validation
Confusion Matrix
ROC Curve
AUC Score
|
gptkbp:is_implemented_in
|
gptkb:Java
gptkb:C++
gptkb:Python
gptkb:R
|
gptkbp:is_often_compared_to
|
gptkb:Support_Vector_Machines
gptkb:Logistic_Regression
gptkb:neural_networks
k-Nearest Neighbors
|
gptkbp:is_often_used_in
|
gptkb:advertising
Finance
Healthcare
|
gptkbp:is_popular_in
|
gptkb:Artificial_Intelligence
Data Mining
Academic Research
Industry Applications
|
gptkbp:requires
|
Training Data
Feature Selection
|
gptkbp:suitable_for
|
High-Dimensional Data
Unbalanced Datasets
|
gptkbp:used_for
|
gptkb:Regression
Classification
|
gptkbp:bfsParent
|
gptkb:machine_learning
|
gptkbp:bfsLayer
|
3
|