gptkbp:instance_of
|
gptkb:software_framework
|
gptkbp:bfsLayer
|
4
|
gptkbp:bfsParent
|
gptkb:Tensor_Flow_Decision_Forests
|
gptkbp:analyzes
|
Tree Structures
|
gptkbp:based_on
|
gptkb:Decision_Trees
|
gptkbp:can_be_used_with
|
Structured Data
Unstructured Data
Ensemble Methods
Weak Learners
|
gptkbp:challenges
|
Interpret
|
gptkbp:controls
|
Missing Values
|
gptkbp:developed_by
|
Friedman
|
https://www.w3.org/2000/01/rdf-schema#label
|
Gradient Boosted Trees
|
gptkbp:improves
|
Model Accuracy
|
gptkbp:is_enhanced_by
|
Regularization
Feature Selection
Feature Scaling
|
gptkbp:is_evaluated_by
|
Cross-Validation
F1 Score
Mean Squared Error
AUC-ROC
R-squared
Precision-Recall
|
gptkbp:is_implemented_in
|
gptkb:Cat_Boost
gptkb:Light_GBM
XG Boost
|
gptkbp:is_popular_in
|
Kaggle Competitions
Winning Data Science Competitions
|
gptkbp:is_scalable
|
Large Datasets
|
gptkbp:is_subject_to
|
Bias-Variance Tradeoff
|
gptkbp:is_used_for
|
gptkb:Regression
Classification
|
gptkbp:is_used_in
|
gptkb:film_production_company
gptkb:software
gptkb:shopping_mall
Anomaly Detection
Credit Scoring
Finance
Fraud Detection
Healthcare
Image Classification
Recommendation Systems
Customer Segmentation
Churn Prediction
Time Series Forecasting
|
gptkbp:passes_through
|
gptkb:battle
|
gptkbp:reduces
|
Overfitting
|
gptkbp:requires
|
gptkb:software
Feature Engineering
|
gptkbp:security_features
|
Noise
|
gptkbp:sensor
|
gptkb:Outliers
|
gptkbp:speed
|
gptkb:Random_Forests
|
gptkbp:suitable_for
|
gptkb:Support_Vector_Machines
gptkb:microprocessor
High-Dimensional Data
Linear Models
|
gptkbp:tuning
|
Grid Search
Random Search
Bayesian Optimization
|