Gradient Boosted Trees

GPTKB entity

Statements (50)
Predicate Object
gptkbp:instanceOf Machine Learning Algorithm
gptkbp:advantage Computationally Intensive
Sensitive to Hyperparameters
Handles Mixed Data Types
High Predictive Accuracy
Less Interpretable
gptkbp:alternativeTo gptkb:Neural_Networks
gptkb:Random_Forests
gptkb:Support_Vector_Machines
gptkbp:application Medical Diagnosis
Fraud Detection
Credit Scoring
Click-Through Rate Prediction
Customer Churn Prediction
Ranking Problems
gptkbp:basedOn Decision Trees
gptkbp:canBe Categorical Variables
Missing Values
gptkbp:category gptkb:Gradient_Boosting
Supervised Learning
Tree-Based Methods
gptkbp:feature Handles Non-linear Data
Prone to Overfitting
Reduces Bias
Sequentially Adds Trees
Supports Feature Importance
https://www.w3.org/2000/01/rdf-schema#label Gradient Boosted Trees
gptkbp:hyperparameter Learning Rate
Number of Trees
Subsample Ratio
Tree Depth
Loss Function
gptkbp:implementedIn gptkb:CatBoost
gptkb:LightGBM
gptkb:XGBoost
gptkb:scikit-learn
gptkbp:introduced gptkb:Jerome_H._Friedman
gptkbp:introducedIn 1999
gptkbp:lossFunction gptkb:Mean_Squared_Error
Huber Loss
Log Loss
gptkbp:relatedTo gptkb:AdaBoost
gptkb:Random_Forests
Boosting
Ensemble Learning
gptkbp:requires Labeled Data
gptkbp:usedFor Regression
Classification
gptkbp:bfsParent gptkb:C&RT
gptkbp:bfsLayer 7