Gradient Boosted Trees

GPTKB entity

Statements (59)
Predicate Object
gptkbp:instance_of gptkb:machine_learning
gptkbp:analyzes Tree Structures
gptkbp:based_on gptkb:Decision_Trees
gptkbp:can_be_combined_with Ensemble Methods
Weak Learners
gptkbp:can_be_used_with Structured Data
Unstructured Data
gptkbp:can_handle Missing Values
gptkbp:challenges Interpret
gptkbp:developed_by Friedman
https://www.w3.org/2000/01/rdf-schema#label Gradient Boosted Trees
gptkbp:improves Model Accuracy
gptkbp:is_enhanced_by Regularization
Feature Selection
Feature Scaling
gptkbp:is_evaluated_by Cross-Validation
F1 Score
Mean Squared Error
AUC-ROC
R-squared
Precision-Recall
gptkbp:is_implemented_in gptkb:XGBoost
gptkb:Cat_Boost
gptkb:Light_GBM
gptkbp:is_popular_for Winning Data Science Competitions
gptkbp:is_popular_in Kaggle Competitions
gptkbp:is_recommended_by gptkb:Support_Vector_Machines
gptkb:neural_networks
Linear Models
gptkbp:is_scalable Large Datasets
gptkbp:is_subject_to Bias-Variance Tradeoff
gptkbp:is_used_in gptkb:E-commerce
gptkb:Natural_Language_Processing
gptkb:advertising
Anomaly Detection
Credit Scoring
Finance
Fraud Detection
Healthcare
Image Classification
Recommendation Systems
Customer Segmentation
Churn Prediction
Time Series Forecasting
gptkbp:reduces Overfitting
gptkbp:requires gptkb:Hyperparameter_Tuning
Feature Engineering
gptkbp:runs_through gptkb:Yes
gptkbp:security Noise
gptkbp:sensitivity gptkb:Outliers
gptkbp:speed gptkb:Random_Forests
gptkbp:suitable_for High-Dimensional Data
gptkbp:tuning Grid Search
Random Search
Bayesian Optimization
gptkbp:used_for gptkb:Regression
Classification
gptkbp:bfsParent gptkb:Tensor_Flow_Decision_Forests
gptkbp:bfsLayer 5