Convolutional Neural Network (CNN)

GPTKB entity

Statements (50)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:applies_to 2 D Data
3 D Data
gptkbp:based_on Convolutional Layers
Pooling Layers
Activation Functions
gptkbp:developed_by gptkb:Yann_Le_Cun
gptkbp:has_applications_in gptkb:Augmented_Reality
gptkb:Autonomous_Vehicles
Facial Recognition
Medical Imaging
Video Analysis
gptkbp:has_component Filters
Feature Maps
Fully Connected Layers
Dropout Layers
gptkbp:has_limitations Computationally Intensive
Overfitting Risk
Requires Large Datasets
https://www.w3.org/2000/01/rdf-schema#label Convolutional Neural Network (CNN)
gptkbp:is_enhanced_by gptkb:stage_adaptation
Data Augmentation
Regularization Techniques
gptkbp:is_evaluated_by Accuracy
F1 Score
Precision
Recall
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Keras
gptkb:Py_Torch
gptkbp:is_influenced_by Biological Neural Networks
Visual Cortex
gptkbp:is_popular_in gptkb:Computer_Vision
gptkb:Deep_Learning
gptkbp:is_related_to gptkb:Artificial_Intelligence
gptkb:Pattern_Recognition
gptkb:machine_learning
gptkb:Deep_Learning
gptkbp:is_used_in gptkb:Retail
gptkb:robotics
gptkb:Gaming
Finance
Security Systems
gptkbp:training Backpropagation
Stochastic Gradient Descent
gptkbp:used_for Image Classification
Image Recognition
Object Detection
gptkbp:bfsParent gptkb:Deep_Residual_Learning_for_Image_Recognition
gptkbp:bfsLayer 5