Statements (121)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:cosmic_ray_detector
|
gptkbp:adapted_into |
video segmentation
|
gptkbp:applies_to |
image processing
computer vision |
gptkbp:architecture |
gptkb:neural_networks
|
gptkbp:can |
objects in images
|
gptkbp:competes_with |
gptkb:FCN_(Fully_Convolutional_Networks)
|
gptkbp:components |
visual recognition systems
|
gptkbp:developed_by |
gptkb:Google_Research
|
gptkbp:enhances |
feature extraction
|
gptkbp:has_achieved |
state-of-the-art results
state-of-the-art performance |
https://www.w3.org/2000/01/rdf-schema#label |
Deep Lab v3
|
gptkbp:improves |
gptkb:Deep_Lab_v2
semantic segmentation semantic segmentation accuracy |
gptkbp:includes |
Deep Lab v3+ model
|
gptkbp:introduced_in |
gptkb:2017
|
gptkbp:is_a_framework_for |
developing AI solutions
|
gptkbp:is_a_reference_for |
new segmentation algorithms
|
gptkbp:is_a_solution_for |
image processing challenges
|
gptkbp:is_a_subject_of |
research studies
|
gptkbp:is_a_tool_for |
data analysis
image understanding |
gptkbp:is_applicable_to |
augmented reality
smart city applications object detection tasks medical image analysis |
gptkbp:is_applied_in |
gptkb:medical_imaging
|
gptkbp:is_associated_with |
semantic segmentation benchmarks
|
gptkbp:is_available_in |
open-source format
|
gptkbp:is_based_on |
gptkb:Res_Net
Convolutional Neural Networks (CNNs) |
gptkbp:is_capable_of |
fine-grained segmentation
|
gptkbp:is_compared_to |
other segmentation models
Mask R-CNN model Seg Net model U-Net model |
gptkbp:is_compatible_with |
GPU acceleration
transfer learning |
gptkbp:is_designed_for |
pixel-wise classification
|
gptkbp:is_designed_to |
handle occlusions
|
gptkbp:is_effective_against |
urban scene segmentation
|
gptkbp:is_enhanced_by |
contextual information
post-processing techniques |
gptkbp:is_evaluated_by |
gptkb:MS_COCO_dataset
gptkb:PASCAL_VOC_dataset gptkb:COCO_dataset gptkb:Cityscapes_dataset gptkb:ADE20_K_dataset |
gptkbp:is_featured_in |
gptkb:Publications
|
gptkbp:is_implemented_in |
gptkb:Tensor_Flow
deep learning frameworks Py Torch framework |
gptkbp:is_influenced_by |
gptkb:Res_Net_architecture
Fully Convolutional Networks |
gptkbp:is_integrated_with |
other AI technologies
|
gptkbp:is_known_for |
high accuracy
flexibility in applications effective feature aggregation effective handling of object boundaries high performance on benchmark datasets high-resolution image processing real-time inference capabilities scalability in model training |
gptkbp:is_known_to |
reduce artifacts
|
gptkbp:is_part_of |
gptkb:Deep_Lab_family
AI research initiatives AI research community deep learning applications computer vision research AI-driven applications AI toolkits |
gptkbp:is_recognized_as |
a leading model
|
gptkbp:is_recognized_by |
industry leaders
|
gptkbp:is_recognized_for |
robustness
flexibility in architecture design high accuracy in segmentation tasks high performance in segmentation tasks improved boundary delineation robust performance across domains robustness to occlusions |
gptkbp:is_supported_by |
community contributions
|
gptkbp:is_trained_in |
gptkb:PASCAL_VOC_dataset
large-scale datasets multi-GPU setups backpropagation algorithm GPU clusters |
gptkbp:is_used_for |
image analysis
image segmentation in robotics |
gptkbp:is_used_in |
autonomous driving
environmental monitoring agriculture monitoring image recognition systems image recognition tasks urban scene segmentation |
gptkbp:is_used_to |
improve image quality
|
gptkbp:is_utilized_for |
scene understanding
|
gptkbp:is_utilized_in |
scene understanding
image classification tasks facial recognition systems |
gptkbp:key_player |
AI advancements
|
gptkbp:model |
deep learning frameworks
learns from data transforms image data |
gptkbp:performance |
semantic segmentation tasks
|
gptkbp:provides |
pixel-wise classification
|
gptkbp:release_year |
gptkb:2017
|
gptkbp:successor |
gptkb:Deep_Lab_v3+
|
gptkbp:suitable_for |
real-time applications
|
gptkbp:supports |
real-time applications
multi-scale context |
gptkbp:technique |
dilated convolutions
|
gptkbp:training |
deep learning techniques
data augmentation techniques |
gptkbp:uses |
atrous convolution
Atrous convolution |
gptkbp:utilizes |
gptkb:Deep_Lab_architecture
multi-scale context |
gptkbp:bfsParent |
gptkb:Deep_Lab
|
gptkbp:bfsLayer |
5
|