Deep Lab v3

GPTKB entity

Statements (120)
Predicate Object
gptkbp:instance_of gptkb:Model
gptkbp:bfsLayer 4
gptkbp:bfsParent gptkb:Deep_Lab
gptkbp:adapted_into video segmentation
gptkbp:applies_to gptkb:Photographer
image processing
augmented reality
computer vision
smart city applications
object detection tasks
medical image analysis
gptkbp:architectural_style gptkb:television_channel
gptkbp:based_on gptkb:Res_Net
Convolutional Neural Networks (CN Ns)
gptkbp:can_be objects in images
gptkbp:competes_with gptkb:FCN_(Fully_Convolutional_Networks)
gptkbp:developed_by gptkb:Google_Research
gptkbp:enhances feature extraction
gptkbp:game_components visual recognition systems
gptkbp:has_achievements state-of-the-art results
state-of-the-art performance
https://www.w3.org/2000/01/rdf-schema#label Deep Lab v3
gptkbp:improves gptkb:Deep_Lab_v2
semantic segmentation
semantic segmentation accuracy
gptkbp:includes Deep Lab v3+ model
gptkbp:introduced gptkb:2017
gptkbp:is_a_framework_for developing AI solutions
gptkbp:is_a_solution_for image processing challenges
gptkbp:is_a_tool_for data analysis
image understanding
gptkbp:is_associated_with semantic segmentation benchmarks
gptkbp:is_available_in open-source format
gptkbp:is_capable_of fine-grained segmentation
gptkbp:is_compared_to other segmentation models
Mask R-CNN model
Seg Net model
U-Net model
gptkbp:is_compatible_with GPU acceleration
transfer learning
gptkbp:is_designed_for pixel-wise classification
gptkbp:is_designed_to handle occlusions
gptkbp:is_effective_against urban scene segmentation
gptkbp:is_enhanced_by contextual information
post-processing techniques
gptkbp:is_evaluated_by gptkb:COCO_dataset
gptkb:Cityscapes_dataset
AD E20 K dataset
MSCOCO dataset
PASCALVOC dataset
gptkbp:is_featured_in gptkb:publishing_company
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
deep learning frameworks
Py Torch framework
gptkbp:is_influenced_by gptkb:Res_Net_architecture
Fully Convolutional Networks
gptkbp:is_integrated_with other AI technologies
gptkbp:is_known_for high accuracy
flexibility in applications
reduce artifacts
effective feature aggregation
effective handling of object boundaries
high performance on benchmark datasets
high-resolution image processing
real-time inference capabilities
scalability in model training
gptkbp:is_part_of gptkb:Deep_Lab_family
AI research initiatives
AI research community
deep learning applications
computer vision research
AI-driven applications
AI toolkits
gptkbp:is_recognized_by industry leaders
a leading model
gptkbp:is_recognized_for robustness
flexibility in architecture design
high accuracy in segmentation tasks
high performance in segmentation tasks
improved boundary delineation
robust performance across domains
robustness to occlusions
gptkbp:is_referenced_in new segmentation algorithms
gptkbp:is_supported_by community contributions
gptkbp:is_used_for image analysis
image segmentation in robotics
gptkbp:is_used_in autonomous driving
environmental monitoring
agriculture monitoring
image recognition systems
image recognition tasks
urban scene segmentation
gptkbp:is_used_to improve image quality
gptkbp:is_utilized_in scene understanding
image classification tasks
facial recognition systems
gptkbp:key_people AI advancements
gptkbp:performance semantic segmentation tasks
gptkbp:provides pixel-wise classification
gptkbp:related_model deep learning frameworks
learns from data
transforms image data
gptkbp:release_year gptkb:2017
gptkbp:subject research studies
gptkbp:successor gptkb:Deep_Lab_v3+
gptkbp:suitable_for real-time applications
gptkbp:supports real-time applications
multi-scale context
gptkbp:technique dilated convolutions
gptkbp:training deep learning techniques
large-scale datasets
multi-GPU setups
data augmentation techniques
backpropagation algorithm
PASCALVOC dataset
GPU clusters
gptkbp:uses atrous convolution
Atrous convolution
gptkbp:utilizes gptkb:Deep_Lab_architecture
multi-scale context