Res Net architecture

GPTKB entity

Statements (61)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:allows very deep networks
gptkbp:developed_by gptkb:Kaiming_He
gptkbp:features residual connections
gptkbp:has_applications_in gptkb:medical_imaging
object detection
video analysis
face recognition
gptkbp:has_variants gptkb:Res_Net-101
gptkb:Res_Net-152
gptkb:Res_Net-50
https://www.w3.org/2000/01/rdf-schema#label Res Net architecture
gptkbp:improves training of deep networks
gptkbp:influenced subsequent architectures
gptkbp:introduced_in gptkb:2015
gptkbp:is_based_on fully connected layers
batch normalization
convolutional layers
skip connections
Re LU activation function
gptkbp:is_characterized_by identity mapping
gptkbp:is_evaluated_by gptkb:CIFAR-10
gptkb:Pascal_VOC
gptkb:Celeb_A_dataset
gptkb:COCO_dataset
gptkb:Image_Net_dataset
gptkb:CIFAR-100
LFW dataset
Oxford Pets dataset
SVHN dataset
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Py_Torch
gptkbp:is_known_for high accuracy
modular design
scalability
improving generalization
reducing overfitting
efficient training
flexibility in architecture design
solving vanishing gradient problem
gptkbp:is_part_of gptkb:AI_technology
image processing techniques
deep learning frameworks
machine learning frameworks
computer vision research
gptkbp:is_popular_in deep learning community
gptkbp:is_used_in gptkb:vehicles
gptkb:robotics
augmented reality
real-time applications
transfer learning
feature extraction
image segmentation
generative models
style transfer
computer vision tasks
smart surveillance
gptkbp:used_for image classification
gptkbp:won gptkb:ILSVRC_2015
gptkbp:bfsParent gptkb:Deep_Lab
gptkbp:bfsLayer 5