FCN (Fully Convolutional Networks)

GPTKB entity

Statements (59)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:applies_to autonomous driving
medical image analysis
satellite image processing
gptkbp:architecture convolutional layers
deconvolutional layers
gptkbp:can_be_combined_with CRFs
gptkbp:can_be_extended_by 3 D segmentation
gptkbp:can_handle variable input sizes
gptkbp:developed_by Long et al.
gptkbp:has_achieved state-of-the-art results
https://www.w3.org/2000/01/rdf-schema#label FCN (Fully Convolutional Networks)
gptkbp:improves image segmentation tasks
gptkbp:input_output pixel-wise predictions
segmentation maps
gptkbp:inspired_by gptkb:Res_Net
gptkb:VGGNet
gptkb:Alex_Net
gptkbp:introduced_in gptkb:2015
gptkbp:is_based_on CNN architecture
gptkbp:is_compared_to traditional CNNs
gptkbp:is_evaluated_by pixel accuracy
Io U metric
mean accuracy
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Py_Torch
gptkbp:is_optimized_for stochastic gradient descent
gptkbp:is_popular_in computer vision community
gptkbp:is_related_to gptkb:Na'vi
gptkb:Seg_Net
gptkbp:is_trained_in backpropagation
gptkbp:is_used_in gptkb:sports_team
augmented reality
environmental monitoring
smart cities
gesture recognition
image classification
object detection
video analysis
facial recognition
traffic monitoring
scene understanding
image restoration
video surveillance
land cover classification
optical character recognition
object tracking
instance segmentation
robot vision
style transfer
face segmentation
gptkbp:replaces fully connected layers
gptkbp:requires large datasets
gptkbp:used_for semantic segmentation
gptkbp:utilizes skip connections
gptkbp:bfsParent gptkb:Na'vi
gptkb:Deep_Lab
gptkb:Seg_Net
gptkbp:bfsLayer 5