Logistic Regression

GPTKB entity

Statements (61)
Predicate Object
gptkbp:instance_of gptkb:Model
gptkbp:allows Linearity assumption
gptkbp:analyzes ROC curve
gptkbp:applies_to Political science
Time-to-event data
gptkbp:based_on Logistic function
gptkbp:can_be_extended_by Multinomial logistic regression
gptkbp:can_be_used_with Ensemble methods
gptkbp:can_provide Interpretability of coefficients
gptkbp:controls Categorical predictors
gptkbp:developed_by gptkb:David_Cox
gptkbp:first_introduced gptkb:1958
gptkbp:has_achievements Customer churn
gptkbp:has_impact_on Independence of observations
https://www.w3.org/2000/01/rdf-schema#label Logistic Regression
gptkbp:input_output Probability values
gptkbp:is_analyzed_in Customer behavior
Survey data
gptkbp:is_atype_of Generalized linear model
gptkbp:is_effective_against Multicollinearity
gptkbp:is_enhanced_by Feature engineering
Lasso or Ridge regression
gptkbp:is_evaluated_by F1 score
Precision and recall
Confusion matrix
AIC or BIC
Area under the curve (AUC)
Log-likelihood
gptkbp:is_implemented_in gptkb:R_programming_language
Various statistical software
Python libraries like scikit-learn
gptkbp:is_often_compared_to gptkb:Support_vector_machines
Decision trees
gptkbp:is_often_used_in Finance
Human resources
Machine learning
Medical research
Public health research
Marketing analytics
Retail analytics
gptkbp:is_popular_in Social sciences
gptkbp:is_related_to Odds ratio
gptkbp:is_used_by Probabilities of outcomes
gptkbp:is_used_for Binary classification
Spam detection
Risk prediction
gptkbp:is_used_in Epidemiology
Credit scoring
Quality control
gptkbp:related_model Binary outcomes
Probability of default
gptkbp:requires Independent variables
Large sample sizes for accuracy
gptkbp:sensor gptkb:Outliers
gptkbp:suitable_for High-dimensional data without regularization
Highly imbalanced datasets
Non-linear relationships
gptkbp:bfsParent gptkb:Decision_Trees
gptkb:AT&_T_Bell_Laboratories
gptkb:Scikit-learn
gptkbp:bfsLayer 4