Bayesian Neural Networks

GPTKB entity

Statements (51)
Predicate Object
gptkbp:instanceOf Machine Learning Method
Neural Network Model
gptkbp:advantage Complex Implementation
High Computational Cost
Difficult to Scale
Quantifies Model Uncertainty
Reduces Overfitting
gptkbp:appliesTo gptkb:Unsupervised_Learning
Supervised Learning
gptkbp:canBeTrainedWith gptkb:Markov_Chain_Monte_Carlo
gptkb:Laplace_Approximation
gptkb:Variational_Inference
gptkbp:estimatedCost Posterior Distribution
gptkbp:extendsTo gptkb:Artificial_Neural_Networks
gptkbp:firstDescribed 1990s
gptkbp:handles Uncertainty
gptkbp:hasComponent Posterior Predictive Distribution
Prior over Weights
Weights as Distributions
https://www.w3.org/2000/01/rdf-schema#label Bayesian Neural Networks
gptkbp:implementedIn gptkb:Edward
gptkb:TensorFlow_Probability
gptkb:JAX
gptkb:Pyro
gptkb:Stan
PyMC3
gptkbp:proposedBy gptkb:Radford_M._Neal
David J.C. MacKay
gptkbp:provides Predictive Uncertainty
gptkbp:relatedTo gptkb:Probabilistic_Graphical_Models
Gaussian Processes
Deep Learning
Ensemble Methods
Dropout Regularization
gptkbp:studiedIn Uncertainty Quantification
Bayesian Deep Learning
Probabilistic Machine Learning
gptkbp:usedIn gptkb:Computer_Vision
gptkb:robot
gptkb:Natural_Language_Processing
gptkb:Reinforcement_Learning
Medical Diagnosis
Regression
Classification
Time Series Forecasting
Active Learning
gptkbp:uses Bayesian Inference
Likelihood Function
Prior Distribution
gptkbp:bfsParent gptkb:Bayesian_Learning
gptkbp:bfsLayer 7