Bayesian Learning

GPTKB entity

Statements (50)
Predicate Object
gptkbp:instanceOf Machine Learning Paradigm
gptkbp:advantage Flexible Modeling
Incorporates Prior Knowledge
Quantifies Uncertainty
gptkbp:appliesTo gptkb:Computer_Vision
gptkb:robot
gptkb:Bioinformatics
gptkb:Natural_Language_Processing
Econometrics
gptkbp:basedOn gptkb:Bayes'_Theorem
gptkbp:challenge Scalability
Computational Complexity
Approximate Inference
Choice of Priors
gptkbp:contrastsWith Frequentist Learning
gptkbp:enables Prediction
Parameter Estimation
Model Selection
gptkbp:focusesOn Probabilistic Inference
Updating Beliefs
https://www.w3.org/2000/01/rdf-schema#label Bayesian Learning
gptkbp:notableFigure gptkb:Pierre-Simon_Laplace
gptkb:Thomas_Bayes
gptkbp:relatedTo Bayesian Inference
Frequentist Learning
gptkbp:usedIn gptkb:Machine_Learning
gptkb:artificial_intelligence
Statistics
gptkbp:uses gptkb:Markov_Chain_Monte_Carlo
gptkb:Hidden_Markov_Models
gptkb:Bayesian_Networks
gptkb:Bayesian_Linear_Regression
gptkb:Bayesian_Neural_Networks
gptkb:Bayesian_Optimization
gptkb:Dirichlet_Processes
gptkb:Expectation-Maximization
gptkb:Gibbs_Sampling
gptkb:Laplace_Approximation
gptkb:Variational_Inference
Gaussian Processes
Evidence
Likelihood Function
Conjugate Priors
Hierarchical Models
Nonparametric Methods
Posterior Predictive Distribution
Posterior Probability
Prior Probability
gptkbp:bfsParent gptkb:Max_Welling
gptkbp:bfsLayer 6