Markov Chain Monte Carlo

GPTKB entity

Statements (53)
Predicate Object
gptkbp:instance_of gptkb:Database_Management_System
gptkbp:applies_to gptkb:television_channel
gptkb:software_framework
statistical physics
computational biology
gptkbp:can_be_used_with ensemble methods
deep learning techniques
variational inference
gptkbp:challenges tuning parameters
high autocorrelation
slow convergence
gptkbp:developed_by gptkb:John_von_Neumann
gptkb:Stanislaw_Ulam
https://www.w3.org/2000/01/rdf-schema#label Markov Chain Monte Carlo
gptkbp:includes Metropolis-Hastings algorithm
Gibbs sampling
gptkbp:is_criticized_for computational intensity
difficulty in implementation
lack of theoretical guarantees
gptkbp:is_evaluated_by Gelman-Rubin diagnostic
Geweke diagnostic
autocorrelation plots
effective sample size
trace plots
gptkbp:is_implemented_in gptkb:MATLAB
gptkb:R_programming_language
gptkb:language
gptkb:Julia_programming_language
gptkbp:is_popular_in gptkb:Artificial_Intelligence
psychometrics
data science
econometrics
gptkbp:is_related_to Bayesian inference
stochastic processes
random sampling
gptkbp:is_supported_by Ergodic theory
Monte Carlo integration
Markov Chain Central Limit Theorem
gptkbp:is_used_for sampling from probability distributions
integrating high-dimensional functions
optimizing complex models
gptkbp:is_used_in financial modeling
genetic studies
risk assessment
image analysis
social science research
gptkbp:provides approximate posterior distributions
gptkbp:related_to Markov chains
Monte Carlo methods
gptkbp:requires burn-in period
convergence diagnostics
gptkbp:bfsParent gptkb:Pyro
gptkbp:bfsLayer 3