Supervised learning

GPTKB entity

Statements (51)
Predicate Object
gptkbp:instanceOf Machine learning paradigm
gptkbp:application Speech recognition
Credit scoring
Image recognition
Medical diagnosis
Sentiment analysis
Spam detection
gptkbp:assesses gptkb:Recall
gptkb:Mean_Squared_Error
F1 score
Precision
Accuracy
Area Under Curve
gptkbp:challenge Overfitting
Data labeling cost
Imbalanced data
Underfitting
gptkbp:contrastsWith Reinforcement learning
Unsupervised learning
gptkbp:dataRequirement Supervised dataset
gptkbp:example Handwritten digit recognition
House price prediction
gptkbp:featureSelection Important for model performance
gptkbp:goal Learn mapping from inputs to outputs
https://www.w3.org/2000/01/rdf-schema#label Supervised learning
gptkbp:hyperparameterTuning Improves model performance
gptkbp:input Feature vector
gptkbp:lossFunction Measures prediction error
gptkbp:modelSelection Based on validation set
gptkbp:originatedIn Statistics
Pattern recognition
gptkbp:output Label
Continuous value
Discrete class
gptkbp:relatedConcept Active learning
Transfer learning
Semi-supervised learning
gptkbp:requires Labeled data
gptkbp:supportsAlgorithm gptkb:Support_Vector_Machine
gptkb:Linear_Regression
gptkb:Random_Forest
gptkb:Neural_Network
Logistic Regression
k-Nearest Neighbors
Decision Tree
gptkbp:testProcess Model predicts labels for unseen data
gptkbp:trainingProcess Model learns from labeled examples
gptkbp:usedIn Regression
Classification
gptkbp:bfsParent gptkb:PAC_learning
gptkbp:bfsLayer 5