Random Forest

GPTKB entity

Statements (34)
Predicate Object
gptkbp:instanceOf gptkb:model
ensemble learning method
gptkbp:advantage robust to outliers
can be slow with many trees
estimates feature importance
handles high dimensional data
large memory usage
less interpretable
gptkbp:basedOn gptkb:tree
gptkbp:citation gptkb:Breiman,_L._(2001)._Random_Forests._Machine_Learning,_45(1),_5-32.
gptkbp:developedBy gptkb:Leo_Breiman
https://www.w3.org/2000/01/rdf-schema#label Random Forest
gptkbp:hyperparameter number of trees
max depth
max features
min samples split
gptkbp:implementedIn gptkb:Spark_MLlib
gptkb:scikit-learn
R
gptkbp:introducedIn 2001
gptkbp:output majority vote
average prediction
gptkbp:reduces overfitting
gptkbp:relatedTo gptkb:AdaBoost
gradient boosting
bagging classifier
gptkbp:usedFor gptkb:dictionary
regression
feature selection
gptkbp:uses bagging
random feature selection
gptkbp:bfsParent gptkb:Text_Classification
gptkb:Supervised_learning
gptkbp:bfsLayer 6