Statements (34)
Predicate | Object |
---|---|
gptkbp:instanceOf |
gptkb:model
ensemble learning method |
gptkbp:advantage |
robust to outliers
can be slow with many trees estimates feature importance handles high dimensional data large memory usage less interpretable |
gptkbp:basedOn |
gptkb:tree
|
gptkbp:citation |
gptkb:Breiman,_L._(2001)._Random_Forests._Machine_Learning,_45(1),_5-32.
|
gptkbp:developedBy |
gptkb:Leo_Breiman
|
https://www.w3.org/2000/01/rdf-schema#label |
Random Forest
|
gptkbp:hyperparameter |
number of trees
max depth max features min samples split |
gptkbp:implementedIn |
gptkb:Spark_MLlib
gptkb:scikit-learn R |
gptkbp:introducedIn |
2001
|
gptkbp:output |
majority vote
average prediction |
gptkbp:reduces |
overfitting
|
gptkbp:relatedTo |
gptkb:AdaBoost
gradient boosting bagging classifier |
gptkbp:usedFor |
gptkb:dictionary
regression feature selection |
gptkbp:uses |
bagging
random feature selection |
gptkbp:bfsParent |
gptkb:Text_Classification
gptkb:Supervised_learning |
gptkbp:bfsLayer |
6
|