Statements (64)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:musical_group
|
gptkbp:analyzes |
tree structures
|
gptkbp:applies_to |
healthcare
environmental studies |
gptkbp:based_on |
CART algorithm
|
gptkbp:can_be_used_with |
multiple decision trees
|
gptkbp:controls |
missing values
categorical variables |
gptkbp:developed_by |
gptkb:Leo_Breiman
|
gptkbp:example |
supervised learning
|
gptkbp:features |
bootstrapping
|
https://www.w3.org/2000/01/rdf-schema#label |
Random Forest
|
gptkbp:hyper_threading |
faster computation
|
gptkbp:input_output |
probability estimates
|
gptkbp:is_capable_of |
outliers
|
gptkbp:is_effective_against |
risk assessment
predictive modeling high-dimensional data predicting outcomes classifying imbalanced datasets |
gptkbp:is_implemented_in |
gptkb:MATLAB
gptkb:R_programming_language gptkb:scikit-learn |
gptkbp:is_known_for |
high accuracy
handling non-linear relationships |
gptkbp:is_often_compared_to |
gradient boosting
|
gptkbp:is_opposed_by |
single decision trees
|
gptkbp:is_popular_in |
data science
Kaggle competitions |
gptkbp:is_used_for |
gptkb:computer
real estate valuation network intrusion detection feature selection customer segmentation credit scoring image classification recommendation systems sales forecasting time series forecasting anomaly detection regression sensitivity analysis text classification market basket analysis data imputation |
gptkbp:is_used_in |
gptkb:sports_team
image processing finance bioinformatics social sciences marketing analytics |
gptkbp:is_vulnerable_to |
overfitting than individual trees
|
gptkbp:provides |
feature importance
|
gptkbp:reduces |
overfitting
|
gptkbp:requires |
hyperparameter tuning
|
gptkbp:sensor |
class imbalance
|
gptkbp:speed |
single decision trees
|
gptkbp:suitable_for |
large datasets
multi-class classification |
gptkbp:type_of |
gptkb:software_framework
ensemble method |
gptkbp:uses |
bagging
|
gptkbp:bfsParent |
gptkb:microprocessor
|
gptkbp:bfsLayer |
3
|