GPTKB
Browse
Query
Compare
Download
Publications
Contributors
Search
Squeeze-and-Excitation Networks
URI:
https://gptkb.org/entity/Squeeze-and-Excitation_Networks
GPTKB entity
Statements (32)
Predicate
Object
gptkbp:instanceOf
gptkb:convolutional_neural_network
gptkbp:abbreviation
gptkb:SENet
gptkbp:appliesTo
convolutional neural networks
gptkbp:arXivID
1709.01507
gptkbp:category
computer vision
deep learning
gptkbp:citation
over 10,000
gptkbp:component
excitation operation
scaling operation
squeeze operation
gptkbp:contribution
channel-wise feature recalibration
https://www.w3.org/2000/01/rdf-schema#label
Squeeze-and-Excitation Networks
gptkbp:implementedIn
gptkb:TensorFlow
gptkb:PyTorch
gptkbp:improves
image classification accuracy
gptkbp:influenced
gptkb:EfficientNet
gptkb:CBAM
gptkbp:introduced
gptkb:Gang_Sun
gptkb:Jie_Hu
gptkb:Li_Shen
gptkbp:introducedIn
2017
gptkbp:language
gptkb:Python
gptkbp:license
open source
gptkbp:notablePublication
gptkb:Squeeze-and-Excitation_Networks
gptkbp:pdf
https://arxiv.org/abs/1709.01507
gptkbp:publishedIn
gptkb:CVPR_2018
gptkbp:usedIn
gptkb:Inception
gptkb:ResNet
gptkb:MobileNet
gptkbp:won
gptkb:ILSVRC_2017_classification_task
gptkbp:bfsParent
gptkb:CVPR_2017
gptkbp:bfsLayer
6