SENet

GPTKB entity

Statements (61)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:can_be_used_for object detection
gptkbp:competes_with gptkb:Res_Net
gptkbp:developed_by Jie Hu
gptkbp:enhances feature representation
gptkbp:has_achieved state-of-the-art performance
gptkbp:has_impact_on model accuracy
gptkbp:has_variants SE-Res Ne Xt
SE-Res Net
https://www.w3.org/2000/01/rdf-schema#label SENet
gptkbp:improves image classification
gptkbp:influenced_by gptkb:Res_Ne_Xt
gptkbp:is_adopted_by gptkb:Microsoft
gptkb:Google
gptkb:Facebook
gptkbp:is_applied_in computer vision
gptkbp:is_compared_to gptkb:Dense_Net
gptkb:VGGNet
gptkbp:is_discussed_in gptkb:academic_journals
workshops
online forums
gptkbp:is_documented_in gptkb:conference
research papers
technical reports
gptkbp:is_evaluated_by gptkb:Image_Net
gptkb:CIFAR-10
gptkb:Pascal_VOC
gptkb:COCO_dataset
gptkb:CIFAR-100
Cityscapes
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Py_Torch
gptkbp:is_influenced_by gptkb:Inception
gptkb:Mobile_Net
gptkbp:is_known_for adaptive feature recalibration
gptkbp:is_optimized_for computational efficiency
gptkbp:is_part_of deep learning frameworks
AI research community
AI model zoo
CNN architectures
gptkbp:is_popular_in gptkb:academic_research
industry applications
gptkbp:is_related_to attention mechanisms
gptkbp:is_supported_by gptkb:AMD
gptkb:NVIDIA
gptkbp:is_trained_in large datasets
gptkbp:is_used_for transfer learning
feature extraction
image generation
semantic segmentation
instance segmentation
gptkbp:is_used_in augmented reality
self-driving cars
video analysis
facial recognition
scene understanding
medical image analysis
gptkbp:published_in gptkb:2018
gptkbp:uses squeeze-and-excitation blocks
gptkbp:bfsParent gptkb:ILSVRC_2017
gptkbp:bfsLayer 8