gptkbp:instanceOf
|
machine learning workflow service
|
gptkbp:developedBy
|
gptkb:Amazon
|
gptkbp:documentation
|
https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines.html
|
gptkbp:enables
|
automation of ML model building
automation of ML model deployment
automation of ML model training
|
gptkbp:features
|
encryption in transit
encryption at rest
IAM integration
VPC support
|
https://www.w3.org/2000/01/rdf-schema#label
|
SageMaker Pipelines
|
gptkbp:integratesWith
|
gptkb:AWS_Step_Functions
gptkb:Amazon_S3
gptkb:Amazon_SNS
gptkb:Amazon_SQS
gptkb:Amazon_ECR
gptkb:AWS_Lambda
gptkb:Amazon_CloudWatch
gptkb:Amazon_SageMaker_Studio
|
gptkbp:launchDate
|
2020
|
gptkbp:partOf
|
gptkb:Amazon_SageMaker
|
gptkbp:priceRange
|
pay-as-you-go
|
gptkbp:regionAvailability
|
AWS global
|
gptkbp:relatedTo
|
gptkb:Amazon_SageMaker_Deployment
gptkb:Amazon_SageMaker_Experiments
gptkb:Amazon_SageMaker_Model_Registry
gptkb:Amazon_SageMaker_Processing
gptkb:Amazon_SageMaker_Training
gptkb:Amazon_SageMaker_Tuning
|
gptkbp:supports
|
gptkb:Python_SDK
gptkb:model
data lineage tracking
custom containers
callback steps
conditional steps
custom algorithms
end-to-end machine learning workflows
pipeline execution history
pipeline parameters
step caching
|
gptkbp:uses
|
data preprocessing
model deployment
model evaluation
model monitoring
model registration
automated ML model retraining
continuous integration and deployment for ML
feature engineering automation
|
gptkbp:bfsParent
|
gptkb:AWS_SageMaker
gptkb:SageMaker_Clarify
gptkb:SageMaker
|
gptkbp:bfsLayer
|
6
|