SageMaker Pipelines

GPTKB entity

Statements (52)
Predicate Object
gptkbp:instanceOf machine learning workflow service
gptkbp:developedBy gptkb:Amazon
gptkbp:documentation https://docs.aws.amazon.com/sagemaker/latest/dg/pipelines.html
gptkbp:enables automation of ML model building
automation of ML model deployment
automation of ML model training
gptkbp:features encryption in transit
encryption at rest
IAM integration
VPC support
https://www.w3.org/2000/01/rdf-schema#label SageMaker Pipelines
gptkbp:integratesWith gptkb:AWS_Step_Functions
gptkb:Amazon_S3
gptkb:Amazon_SNS
gptkb:Amazon_SQS
gptkb:Amazon_ECR
gptkb:AWS_Lambda
gptkb:Amazon_CloudWatch
gptkb:Amazon_SageMaker_Studio
gptkbp:launchDate 2020
gptkbp:partOf gptkb:Amazon_SageMaker
gptkbp:priceRange pay-as-you-go
gptkbp:regionAvailability AWS global
gptkbp:relatedTo gptkb:Amazon_SageMaker_Deployment
gptkb:Amazon_SageMaker_Experiments
gptkb:Amazon_SageMaker_Model_Registry
gptkb:Amazon_SageMaker_Processing
gptkb:Amazon_SageMaker_Training
gptkb:Amazon_SageMaker_Tuning
gptkbp:supports gptkb:Python_SDK
gptkb:model
data lineage tracking
custom containers
callback steps
conditional steps
custom algorithms
end-to-end machine learning workflows
pipeline execution history
pipeline parameters
step caching
gptkbp:uses data preprocessing
model deployment
model evaluation
model monitoring
model registration
automated ML model retraining
continuous integration and deployment for ML
feature engineering automation
gptkbp:bfsParent gptkb:AWS_SageMaker
gptkb:SageMaker_Clarify
gptkb:SageMaker
gptkbp:bfsLayer 6