Amazon SageMaker Model Registry

GPTKB entity

Properties (62)
Predicate Object
gptkbp:instanceOf Model Registry
gptkbp:allows model deployment
gptkbp:distributor model metadata
gptkbp:enables team collaboration
model validation
model experimentation
model rollback
automated model promotion
model_discovery
gptkbp:facilitates model sharing
collaboration among data scientists
https://www.w3.org/2000/01/rdf-schema#label Amazon SageMaker Model Registry
gptkbp:integratesWith AWS_services
gptkbp:integration CI/CD pipelines
gptkbp:isAccessibleBy gptkb:AWS_Management_Console
gptkb:SageMaker_Studio
API_calls
gptkbp:isCompatibleWith Docker containers
Jupyter notebooks
SageMaker_Pipelines
gptkbp:isDesignedFor enterprise use
gptkbp:isDocumentedIn AWS documentation
AWS_blogs
AWS_whitepapers
gptkbp:isIntegratedWith gptkb:Amazon_CloudWatch
gptkb:Amazon_S3
gptkb:AWS_Lambda
gptkbp:isOptimizedFor performance
scalability
gptkbp:isPartOf data-driven decision making
machine learning lifecycle
AWS_ecosystem
cloud-based_ML_solutions
AI/ML_strategy
gptkbp:isRelatedTo machine learning models
gptkbp:isSupportedBy AWS_SDKs
gptkbp:isUsedBy data scientists
gptkbp:isUsedFor model optimization
model lifecycle management
gptkbp:isUsedIn data science projects
production_ML_applications
gptkbp:isUtilizedFor business analysts
ML engineers
gptkbp:isUtilizedIn production environments
gptkbp:offers model monitoring capabilities
gptkbp:partOf Amazon SageMaker
gptkbp:provides audit trails
model evaluation metrics
model versioning
model approval workflows
model deployment options
model metadata management
model registration features
gptkbp:supports data preprocessing
A/B testing
model testing
data versioning
model governance
model performance tracking
model retraining
multiple model formats
gptkbp:track model lineage