Statements (52)
Predicate | Object |
---|---|
gptkbp:instanceOf |
Cloud Service Feature
|
gptkbp:accessibleBy |
gptkb:AWS_CloudFormation
gptkb:AWS_CLI gptkb:AWS_Management_Console gptkb:SageMaker_SDK |
gptkbp:billingModel |
Pay-as-you-go
|
gptkbp:documentation |
https://docs.aws.amazon.com/sagemaker/latest/dg/deploy-model.html
|
gptkbp:enables |
Machine Learning Model Hosting
|
gptkbp:features |
gptkb:Encryption_at_Rest
Encryption in Transit IAM Role-based Access VPC Support |
https://www.w3.org/2000/01/rdf-schema#label |
Amazon SageMaker Deployment
|
gptkbp:integratesWith |
gptkb:AWS_IAM
gptkb:Amazon_S3 gptkb:Amazon_VPC gptkb:AWS_Lambda gptkb:Amazon_CloudWatch |
gptkbp:launched |
2017
|
gptkbp:partOf |
gptkb:Amazon_SageMaker
|
gptkbp:provides |
gptkb:Amazon_Web_Services
|
gptkbp:regionAvailability |
Global
|
gptkbp:supports |
gptkb:Auto_Scaling
A/B Testing Asynchronous Inference Batch Transform Blue/Green Deployment Bring Your Own Model Data Capture Model Drift Detection Model Explainability Model Monitoring Model Versioning Real-time Inference Shadow Testing Custom Algorithms Multi-Container Endpoints Multi-Model Endpoints Pre-built Algorithms |
gptkbp:usedBy |
Developers
Data Scientists ML Engineers |
gptkbp:usedFor |
Model Endpoint Management
Model Lifecycle Management Production ML Model Deployment Scalable Inference |
gptkbp:uses |
gptkb:Docker_Containers
Inference Pipelines SageMaker Endpoints SageMaker Model Artifacts |
gptkbp:bfsParent |
gptkb:SageMaker_Pipelines
|
gptkbp:bfsLayer |
7
|