SVM

GPTKB entity

Statements (71)
Predicate Object
gptkbp:instance_of gptkb:software_framework
gptkbp:bfsLayer 5
gptkbp:bfsParent gptkb:Savoia-Milano
gptkbp:aims_to find the optimal hyperplane
gptkbp:based_on statistical learning theory
gptkbp:can_be_used_with ensemble methods
polynomial kernel
linear kernel
RBF kernel
gptkbp:controls non-linear data
gptkbp:developed_by gptkb:Vladimir_Vapnik
gptkbp:has_method C (regularization parameter)
gamma (kernel coefficient)
https://www.w3.org/2000/01/rdf-schema#label SVM
gptkbp:is_effective_against large datasets
high-dimensional spaces
gptkbp:is_implemented_in gptkb:MATLAB
gptkb:R
gptkb:Library
gptkbp:is_popular_in image recognition
bioinformatics
text classification
gptkbp:is_related_to support vector classification (SVC)
support vector regression (SVR)
gptkbp:is_used_for gptkb:computer
outlier detection
regression
gptkbp:is_used_in gptkb:sports_team
gptkb:Company
risk management
financial forecasting
quality control
real estate valuation
bioinformatics
network intrusion detection
traffic prediction
weather forecasting
sentiment analysis
customer segmentation
credit scoring
image classification
object detection
recommendation systems
sales forecasting
social network analysis
medical diagnosis
spam detection
healthcare analytics
text mining
anomaly detection
image segmentation
insurance risk assessment
energy forecasting
time series prediction
handwriting recognition
face detection
transportation analysis
manufacturing optimization
churn prediction
market basket analysis
telecommunications analysis
e-commerce analytics
gene classification
protein classification
gptkbp:requires training data
feature scaling
gptkbp:scientific_classification nan
gptkbp:security_features overfitting in high dimensions
gptkbp:sensor overfitting
gptkbp:suitable_for noisy data
gptkbp:utilizes kernel functions