GPTKB
Browse
Query
Compare
Download
Publications
Contributors
Search
SENet: Squeeze-and-Excitation Networks
URI:
https://gptkb.org/entity/SENet:_Squeeze-and-Excitation_Networks
GPTKB entity
Statements (31)
Predicate
Object
gptkbp:instanceOf
deep learning architecture
gptkbp:appliesTo
convolutional neural networks
gptkbp:category
gptkb:convolutional_neural_network
computer vision
attention mechanism
gptkbp:citation
over 10,000
gptkbp:contribution
dynamic channel-wise feature recalibration
https://www.w3.org/2000/01/rdf-schema#label
SENet: Squeeze-and-Excitation Networks
gptkbp:improves
channel interdependencies modeling
gptkbp:influenced
gptkb:EfficientNet
gptkb:CBAM
SKNet
gptkbp:introduced
gptkb:Andrea_Vedaldi
gptkb:Gang_Sun
gptkb:Jie_Hu
gptkb:Li_Shen
Samuel Albanie
gptkbp:notablePublication
gptkb:Squeeze-and-Excitation_Networks
https://arxiv.org/abs/1709.01507
gptkbp:openSource
gptkb:GitHub
gptkbp:platform
gptkb:TensorFlow
gptkb:PyTorch
gptkbp:proposedBy
Squeeze-and-Excitation block
gptkbp:publicationYear
2018
gptkbp:publishedIn
gptkb:CVPR_2018
gptkbp:usedIn
image classification
object detection
semantic segmentation
gptkbp:won
gptkb:ILSVRC_2017_classification_task
gptkbp:bfsParent
gptkb:CVPR_2018
gptkbp:bfsLayer
7