Quantum Machine Learning algorithms

GPTKB entity

Statements (52)
Predicate Object
gptkbp:instanceOf gptkb:algorithm
gptkbp:advantage potential exponential speedup
gptkbp:appliesTo quantum computers
classical data
gptkbp:category gptkb:reinforcement_learning
supervised learning
generative models
unsupervised learning
hybrid quantum-classical algorithms
gptkbp:challenge decoherence
error rates
data encoding bottleneck
limited qubit count
noisy intermediate-scale quantum devices
gptkbp:enables quantum speedup
gptkbp:field Quantum Machine Learning
https://www.w3.org/2000/01/rdf-schema#label Quantum Machine Learning algorithms
gptkbp:includes gptkb:Variational_Quantum_Eigensolver
Quantum Boltzmann Machine
Quantum Clustering
Quantum Generative Adversarial Network
Quantum Neural Networks
Quantum Principal Component Analysis
Quantum Reinforcement Learning
Quantum Support Vector Machine
Quantum k-Means
gptkbp:notableContributor gptkb:Seth_Lloyd
Maria Schuld
Nathan Wiebe
Peter Wittek
gptkbp:proposedBy early 2000s
gptkbp:publishedIn gptkb:Nature
gptkb:Physical_Review_Letters
gptkb:arXiv
gptkbp:relatedTo gptkb:machine_learning
gptkb:quantum_computing
gptkbp:requires quantum hardware
quantum circuits
quantum gates
quantum data encoding
gptkbp:studiedBy gptkb:Google
gptkb:IBM
gptkb:Microsoft
academic institutions
startups
gptkbp:usedFor gptkb:dictionary
optimization
regression
clustering
dimensionality reduction
gptkbp:bfsParent gptkb:Noisy_Intermediate-Scale_Quantum_(NISQ)_algorithm
gptkbp:bfsLayer 7