Variational Quantum Eigensolver
GPTKB entity
Properties (63)
Predicate | Object |
---|---|
gptkbp:instanceOf |
gptkb:physicist
|
gptkbp:adaptedInto |
different quantum architectures
|
gptkbp:aimsTo |
computational efficiency
|
gptkbp:appliesTo |
molecular systems
quantum_chemistry |
gptkbp:basedOn |
classical optimization techniques
|
gptkbp:evaluates |
cost functions
|
gptkbp:has_a_focus_on |
quantum_technology_development
|
gptkbp:hasPrograms |
material science
pharmaceuticals quantum_error_correction |
https://www.w3.org/2000/01/rdf-schema#label |
Variational Quantum Eigensolver
|
gptkbp:impact |
error mitigation techniques
|
gptkbp:influenced |
quantum variational methods
|
gptkbp:involves |
parameterized quantum circuits
|
gptkbp:is_a |
combining classical and quantum computing
|
gptkbp:is_a_key_component_of |
gptkb:quantum_machine_learning
|
gptkbp:is_a_platform_for |
quantum_optimization_problems
|
gptkbp:is_a_route_for |
quantum_advantage
|
gptkbp:is_a_subject_of |
gptkb:quantum_computing
academic research |
gptkbp:is_a_time_for |
solving optimization problems
solving eigenvalue problems quantum_state_tomography quantum_many-body_problems |
gptkbp:is_a_tool_for |
quantum_state_preparation
|
gptkbp:is_designed_to |
quantum circuits
reduce quantum noise |
gptkbp:is_part_of |
quantum_algorithms_for_optimization
|
gptkbp:is_recognized_for |
various quantum programming languages
quantum_hardware |
gptkbp:is_studied_in |
quantum phase transitions
quantum_information_theory |
gptkbp:is_supported_by |
Noisy Intermediate-Scale Quantum (NISQ) devices
|
gptkbp:is_used_in |
simulate quantum systems
finding the ground state energy quantum_simulation |
gptkbp:performance |
energy expectation value
|
gptkbp:produces |
gptkb:John_Preskill
|
gptkbp:related_to |
quantum annealing
quantum phase estimation quantum variational algorithms |
gptkbp:relatedTo |
classical algorithms
|
gptkbp:requires |
gptkb:quantum_computer
quantum_gates |
gptkbp:suitableFor |
quantum_finance
|
gptkbp:technique |
can be scaled up
can achieve high accuracy can be adapted for specific problems can be used for benchmarking quantum devices can be used in industry can be used to advance quantum research can be used to analyze quantum systems can be used to develop quantum technologies can be used to enhance quantum simulations can be used to explore quantum states can be used to improve quantum measurements can be used to investigate quantum correlations can be used to optimize quantum algorithms leverages quantum entanglement reduces computational resources can_be_used_to_study_quantum_dynamics |
gptkbp:utilizes |
variational principle
|