Proximal Policy Optimization

GPTKB entity

Statements (60)
Predicate Object
gptkbp:instance_of gptkb:machine_learning
gptkbp:applies_to Policy Gradient Methods
gptkbp:can_be_used_with gptkb:neural_networks
gptkbp:can_handle High-Dimensional Action Spaces
gptkbp:developed_by gptkb:Open_AI
gptkbp:has_function gptkb:Epsilon
Learning Rate
Batch Size
https://www.w3.org/2000/01/rdf-schema#label Proximal Policy Optimization
gptkbp:improves Stability of Training
gptkbp:introduced_in gptkb:2017
gptkbp:is_adopted_by gptkb:Industry
Academia
gptkbp:is_based_on Policy Gradient Theorem
gptkbp:is_compared_to gptkb:Trust_Region_Policy_Optimization
gptkb:Deep_Q-Networks
Actor-Critic Methods
gptkbp:is_considered_as State-of-the-Art Algorithm
gptkbp:is_documented_in Research Papers
Technical Reports
gptkbp:is_evaluated_by Training Time
Policy Stability
Convergence Rate
Cumulative Reward
Average Reward
Policy Performance
Exploration Efficiency
Sample Complexity
gptkbp:is_implemented_in gptkb:Stable_Baselines
gptkb:Tensor_Flow
gptkb:Py_Torch
gptkb:Open_AI_Baselines
gptkbp:is_influenced_by Trust Region Methods
REINFORCE Algorithm
gptkbp:is_known_for Sample Efficiency
gptkbp:is_optimized_for Policy Updates
gptkbp:is_part_of Deep Learning Techniques
Reinforcement Learning Frameworks
gptkbp:is_popular_in Machine Learning Research
Artificial Intelligence Community
gptkbp:is_related_to gptkb:Trust_Region_Policy_Optimization
gptkbp:is_supported_by Community Contributions
Open Source Libraries
gptkbp:is_tested_for gptkb:Atari_Games
Continuous Control Tasks
Benchmark Environments
Robotic Simulations
gptkbp:is_used_for Value Function Approximation
Policy Learning
Training Agents
gptkbp:is_used_in gptkb:robotics
Real-World Applications
Game Playing
Simulated Environments
gptkbp:security Hyperparameter Sensitivity
gptkbp:suitable_for Discrete Action Spaces
Continuous Action Spaces
gptkbp:uses Clipped Objective Function
gptkbp:bfsParent gptkb:Deep_Reinforcement_Learning
gptkbp:bfsLayer 4