Deep Reinforcement Learning

GPTKB entity

Statements (47)
Predicate Object
gptkbp:instance_of gptkb:machine_learning
gptkbp:benefits Improved Decision Making
Learning from Interaction
Adaptability to Changing Environments
Automation of Complex Tasks
Handling Large State Spaces
gptkbp:challenges Sample Efficiency
High Dimensional State Spaces
Exploration vs Exploitation
Credit Assignment Problem
Stability and Convergence
gptkbp:developed_by gptkb:Google_Deep_Mind
gptkb:Facebook_AI_Research
gptkb:Open_AI
University Research Labs
gptkbp:has_applications_in gptkb:Natural_Language_Processing
gptkb:robotics
Game Playing
gptkbp:has_limitations Difficult to Interpret
Long Training Times
Requires Large Amounts of Data
Risk of Overfitting
Sensitive to Hyperparameters
gptkbp:has_method gptkb:Proximal_Policy_Optimization
gptkb:Trust_Region_Policy_Optimization
gptkb:Deep_Q-Networks
Actor-Critic Methods
Policy Gradients
https://www.w3.org/2000/01/rdf-schema#label Deep Reinforcement Learning
gptkbp:is_evaluated_by Learning Rate
Convergence Speed
Generalization Ability
Cumulative Reward
Stability of Policy
gptkbp:is_related_to gptkb:neural_networks
Markov Decision Processes
Monte Carlo Methods
Function Approximation
Temporal Difference Learning
gptkbp:is_used_in gptkb:Autonomous_Vehicles
Finance
Healthcare
Smart Grids
Energy Management
gptkbp:bfsParent gptkb:Jürgen_Schmidhuber
gptkb:Geoffrey_R._Hinton
gptkbp:bfsLayer 3