Deep Q-Networks

GPTKB entity

Statements (58)
Predicate Object
gptkbp:instance_of gptkb:machine_learning
gptkbp:applies_to gptkb:machine_learning
gptkbp:based_on Q-Learning
gptkbp:can_be_combined_with Value Function Approximation
gptkbp:can_be_used_in gptkb:robotics
gptkbp:developed_by gptkb:Deep_Mind
gptkbp:enhances Sample Efficiency
gptkbp:has_achieved Superhuman Performance
gptkbp:has_applications_in Finance
Healthcare
Game Playing
gptkbp:has_limitations Overfitting
Computational Cost
Sample Inefficiency
https://www.w3.org/2000/01/rdf-schema#label Deep Q-Networks
gptkbp:improves Exploration Strategies
Action Selection
gptkbp:inspired_by Human Learning
gptkbp:introduced_in gptkb:2013
gptkbp:is_applied_in gptkb:Atari_Games
gptkbp:is_challenged_by Adversarial Attacks
Non-Stationary Environments
Partial Observability
gptkbp:is_evaluated_by Mean Squared Error
Performance Metrics
DQN Algorithm
Cumulative Reward
gptkbp:is_explored_in gptkb:Workshops
Conferences
Academic Papers
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Py_Torch
gptkbp:is_influenced_by Cognitive Science
Behavioral Psychology
Human Cognition
gptkbp:is_part_of gptkb:Artificial_Intelligence
gptkbp:is_related_to gptkb:Artificial_Neural_Networks
gptkb:Deep_Learning
Markov Decision Processes
Policy Gradient Methods
Temporal Difference Learning
gptkbp:is_supported_by gptkb:Google_AI
gptkb:Open_AI
gptkb:NVIDIA
gptkbp:is_trained_in Stochastic Gradient Descent
gptkbp:is_used_for Control Systems
Decision Making
Game AI
gptkbp:is_used_in gptkb:Industry
gptkb:research
gptkb:Education
gptkbp:requires Large Datasets
gptkbp:training Loss Functions
Reward Signals
gptkbp:uses gptkb:neural_networks
gptkbp:utilizes Experience Replay
gptkbp:bfsParent gptkb:Deep_Reinforcement_Learning
gptkbp:bfsLayer 4