NASNet-B

GPTKB entity

Statements (62)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:achieves_top1_accuracy 74.9% on Image Net
gptkbp:achieves_top5_accuracy 91.2% on Image Net
gptkbp:based_on neural architecture search
gptkbp:can_be_used_for object detection
image generation
semantic segmentation
gptkbp:competes_with gptkb:Dense_Net
gptkb:Res_Net
gptkbp:designed_for image classification
gptkbp:developed_by gptkb:Google
gptkbp:has_achieved state-of-the-art performance
gptkbp:has_function 88 million
gptkbp:has_variants gptkb:NASNet-A
gptkb:NASNet-C
NASNet-D
https://www.w3.org/2000/01/rdf-schema#label NASNet-B
gptkbp:introduced_in gptkb:2018
gptkbp:is_available_in gptkb:Tensor_Flow
gptkb:Keras
gptkb:Py_Torch
gptkbp:is_documented_in research articles
technical reports
theses
conference papers
Git Hub repositories
gptkbp:is_evaluated_by gptkb:CIFAR-10
gptkb:Stanford_Dogs
gptkb:CIFAR-100
F1 score
mean average precision
Top-1 accuracy
Top-5 accuracy
Oxford Pets
gptkbp:is_influenced_by human-designed architectures
gptkbp:is_optimized_for GPU acceleration
gptkbp:is_part_of gptkb:machine_learning
gptkbp:is_related_to hyperparameter tuning
ensemble methods
adversarial training
model compression techniques
transfer learning techniques
data augmentation methods
gptkbp:is_supported_by gptkb:academic_research
community contributions
open-source projects
gptkbp:is_trained_in gptkb:Image_Net
large datasets
gptkbp:is_used_in research papers
industry applications
gptkbp:part_of NASNet family
gptkbp:performance neural architecture search
deep learning models
image recognition tasks
computer vision tasks
gptkbp:supports transfer learning
gptkbp:uses batch normalization
convolutional layers
dropout layers
recurrent layers
gptkbp:bfsParent gptkb:NASNet
gptkbp:bfsLayer 6