gptkbp:instanceOf
|
gptkb:convolutional_neural_network
|
gptkbp:abbreviation
|
gptkb:MLP
|
gptkbp:alternativeTo
|
gptkb:Radial_Basis_Function_Network
gptkb:convolutional_neural_network
gptkb:Recurrent_Neural_Network
|
gptkbp:developedBy
|
1970s
|
gptkbp:hasActivationFunction
|
gptkb:ReLU
gptkb:Sigmoid
gptkb:Tanh
Softmax
|
gptkbp:hasApplication
|
gptkb:Speech_Recognition
Medical Diagnosis
Image Recognition
Financial Forecasting
|
gptkbp:hasComponent
|
Hidden Layer
Input Layer
Output Layer
|
gptkbp:hasLossFunction
|
gptkb:Mean_Squared_Error
Cross-Entropy Loss
|
gptkbp:hasProperty
|
Feedforward Architecture
Fully Connected Layers
|
gptkbp:hasRegularization
|
gptkb:Dropout
L2 Regularization
L1 Regularization
|
gptkbp:hasTrainingAlgorithm
|
Stochastic Gradient Descent
Batch Gradient Descent
Mini-batch Gradient Descent
|
https://www.w3.org/2000/01/rdf-schema#label
|
Multi-layer Perceptron
|
gptkbp:inventedBy
|
gptkb:Frank_Rosenblatt
|
gptkbp:limitation
|
Requires Large Datasets
Prone to Overfitting
Cannot Handle Variable-Length Input
Cannot Model Sequential Data
|
gptkbp:parameter
|
Weights
Learning Rate
Biases
Number of Layers
Number of Neurons
|
gptkbp:relatedTo
|
gptkb:Machine_Learning
gptkb:artificial_intelligence
gptkb:Perceptron
Deep Learning
|
gptkbp:trainer
|
Gradient Descent
|
gptkbp:usedIn
|
Regression
Classification
Supervised Learning
|
gptkbp:uses
|
Activation Function
Backpropagation
|
gptkbp:bfsParent
|
gptkb:Adaptive_Linear_Neuron
|
gptkbp:bfsLayer
|
8
|