Multi-layer Perceptron

GPTKB entity

Statements (50)
Predicate Object
gptkbp:instanceOf gptkb:convolutional_neural_network
gptkbp:abbreviation gptkb:MLP
gptkbp:alternativeTo gptkb:Radial_Basis_Function_Network
gptkb:convolutional_neural_network
gptkb:Recurrent_Neural_Network
gptkbp:developedBy 1970s
gptkbp:hasActivationFunction gptkb:ReLU
gptkb:Sigmoid
gptkb:Tanh
Softmax
gptkbp:hasApplication gptkb:Speech_Recognition
Medical Diagnosis
Image Recognition
Financial Forecasting
gptkbp:hasComponent Hidden Layer
Input Layer
Output Layer
gptkbp:hasLossFunction gptkb:Mean_Squared_Error
Cross-Entropy Loss
gptkbp:hasProperty Feedforward Architecture
Fully Connected Layers
gptkbp:hasRegularization gptkb:Dropout
L2 Regularization
L1 Regularization
gptkbp:hasTrainingAlgorithm Stochastic Gradient Descent
Batch Gradient Descent
Mini-batch Gradient Descent
https://www.w3.org/2000/01/rdf-schema#label Multi-layer Perceptron
gptkbp:inventedBy gptkb:Frank_Rosenblatt
gptkbp:limitation Requires Large Datasets
Prone to Overfitting
Cannot Handle Variable-Length Input
Cannot Model Sequential Data
gptkbp:parameter Weights
Learning Rate
Biases
Number of Layers
Number of Neurons
gptkbp:relatedTo gptkb:Machine_Learning
gptkb:artificial_intelligence
gptkb:Perceptron
Deep Learning
gptkbp:trainer Gradient Descent
gptkbp:usedIn Regression
Classification
Supervised Learning
gptkbp:uses Activation Function
Backpropagation
gptkbp:bfsParent gptkb:Adaptive_Linear_Neuron
gptkbp:bfsLayer 8