Support vector machines

GPTKB entity

Statements (58)
Predicate Object
gptkbp:instance_of gptkb:software_framework
gptkbp:bfsLayer 4
gptkbp:bfsParent gptkb:Pattern_Recognition_and_Machine_Learning
gptkbp:analyzes decision boundary
gptkbp:based_on statistical learning theory
gptkbp:can_be_extended_by multi-class classification
gptkbp:can_be_used_with cross-validation
ensemble methods
gptkbp:challenges large datasets
high dimensional data
gptkbp:controls non-linear data
gptkbp:developed_by gptkb:Vladimir_Vapnik
https://www.w3.org/2000/01/rdf-schema#label Support vector machines
gptkbp:input_output hyperplane
gptkbp:is_evaluated_by gptkb:municipality
F1 score
ROC curve
accuracy
precision
AUC score
gptkbp:is_implemented_in gptkb:MATLAB
gptkb:Graphics_Processing_Unit
gptkb:R
gptkb:Keras
gptkb:scikit-learn
gptkb:WEKA
gptkb:Library
libsvm
gptkbp:is_optimized_for classification error
gptkbp:is_part_of supervised learning
gptkbp:is_popular_in image recognition
bioinformatics
text classification
gptkbp:is_related_to gptkb:microprocessor
logistic regression
decision trees
random forests
gptkbp:is_used_for gptkb:computer
sentiment analysis
spam detection
anomaly detection
regression
polynomial kernel
handwriting recognition
face detection
linear kernel
radial basis function kernel
gptkbp:is_used_in healthcare
finance
marketing
gptkbp:max_speed margin between classes
gptkbp:requires training data
parameter tuning
gptkbp:security_features overfitting
gptkbp:sensor outliers
gptkbp:training stochastic gradient descent
batch gradient descent
gptkbp:utilizes kernel trick