Kubeflow Pipelines SDK

GPTKB entity

Statements (58)
Predicate Object
gptkbp:instance_of gptkb:software
gptkbp:bfsLayer 5
gptkbp:bfsParent gptkb:Kubeflow_Pipelines
gptkbp:allows parameterized pipelines
gptkbp:can_be_extended_by custom Python code
gptkbp:community_support gptkb:theorem
gptkbp:developed_by gptkb:Job_Search_Engine
gptkbp:enables artifact management
cloud-native ML workflows
pipeline versioning
reproducibility of ML workflows
gptkbp:facilitates visualization of pipeline runs
gptkbp:has_documentation available online
https://www.w3.org/2000/01/rdf-schema#label Kubeflow Pipelines SDK
gptkbp:includes pipeline creation tools
gptkbp:integrates_with gptkb:fortification
gptkbp:is_available_for gptkb:smartphone
gptkb:operating_system
gptkbp:is_available_on gptkb:archive
gptkbp:is_compatible_with gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkb:Argo_Workflows
XG Boost
gptkbp:is_documented_in Kubeflow documentation
gptkbp:is_integrated_with gptkb:TFX
gptkb:Seldon_Core
M Lflow
gptkbp:is_open_source gptkb:theorem
gptkbp:is_part_of cloud-native applications
Kubeflow ecosystem
ML Ops tools
gptkbp:is_supported_by gptkb:Kubeflow_community
gptkbp:is_used_by data scientists
ML engineers
Dev Ops teams
gptkbp:is_used_for automating ML workflows
building and deploying machine learning workflows
logging pipeline runs
monitoring ML pipelines
orchestrating ML tasks
tracking experiments
gptkbp:is_used_in research projects
production environments
gptkbp:part_of gptkb:Kubeflow
gptkbp:provides UI for managing pipelines
sample pipelines
Python client for Kubeflow Pipelines API
SDK for creating components
gptkbp:released_in gptkb:2018
gptkbp:supports data preprocessing
custom components
model evaluation
component-based architecture
model deployment
model training
multi-step workflows
CI/ CD for ML
gptkbp:written_in gptkb:Library