K-means clustering

GPTKB entity

Statements (52)
Predicate Object
gptkbp:instanceOf gptkb:algorithm
unsupervised learning algorithm
gptkbp:application image compression
anomaly detection
customer segmentation
document clustering
market basket analysis
gptkbp:category centroid-based clustering
partitioning method
gptkbp:complexity O(n*k*i*d)
gptkbp:convergenceCriterion centroids do not move
no change in assignments
https://www.w3.org/2000/01/rdf-schema#label K-means clustering
gptkbp:implementedIn gptkb:MATLAB
gptkb:Spark_MLlib
gptkb:scikit-learn
R
gptkbp:input set of data points
number of clusters (k)
gptkbp:introduced gptkb:Stuart_Lloyd
gptkbp:introducedIn 1957
gptkbp:limitation sensitive to outliers
assumes spherical clusters
not suitable for non-globular clusters
requires number of clusters as input
sensitive to initial centroids
gptkbp:measures Euclidean distance
gptkbp:objective minimize within-cluster sum of squares
gptkbp:output cluster centroids
k clusters
gptkbp:popularizedBy gptkb:J._MacQueen
1967
gptkbp:relatedTo gptkb:Gaussian_Mixture_Model
gptkb:Expectation-Maximization_algorithm
Hierarchical clustering
gptkbp:step assign points to nearest centroid
initialize centroids
repeat until convergence
update centroids
gptkbp:supportsAlgorithm iterative algorithm
gptkbp:usedIn gptkb:machine_learning
pattern recognition
data mining
image segmentation
vector quantization
gptkbp:variant gptkb:Bisecting_K-means
gptkb:Fuzzy_C-means
gptkb:K-medoids
gptkb:Mini-batch_K-means
gptkbp:bfsParent gptkb:H2O-3
gptkb:Gaussian_mixture_models
gptkbp:bfsLayer 6