gptkbp:instanceOf
|
statistical analysis
Machine learning algorithm
|
gptkbp:alternativeTo
|
gptkb:Dirichlet_process_mixture_models
gptkb:Finite_mixture_models
|
gptkbp:application
|
gptkb:Bioinformatics
Speech recognition
Image segmentation
Anomaly detection
|
gptkbp:assumes
|
Independence between components
Data is generated from a mixture of several Gaussian distributions
|
gptkbp:basedOn
|
gptkb:Gaussian_distribution
|
gptkbp:canBe
|
Diagonal covariance
Full covariance
Multivariate
Spherical covariance
Univariate
|
gptkbp:canBeRegularizedWith
|
Covariance regularization
|
gptkbp:canBeTrainedWith
|
Bayesian inference
Maximum likelihood estimation
|
gptkbp:category
|
Generative model
Probabilistic model
Unsupervised learning
|
gptkbp:component
|
Covariance matrix
Mean vector
Mixing coefficient
|
gptkbp:extendsTo
|
gptkb:Variational_inference
gptkb:Mixture_of_experts
gptkb:Mixture_of_factor_analyzers
|
https://www.w3.org/2000/01/rdf-schema#label
|
Gaussian mixture models
|
gptkbp:implementedIn
|
gptkb:MATLAB
gptkb:TensorFlow_Probability
gptkb:scikit-learn
R
|
gptkbp:introduced
|
gptkb:Karl_Pearson
|
gptkbp:introducedIn
|
1894
|
gptkbp:limitation
|
Assumes Gaussianity
Can overfit with too many components
Sensitive to initialization
|
gptkbp:modelSelectionMethod
|
gptkb:Akaike_Information_Criterion
gptkb:Bayesian_Information_Criterion
|
gptkbp:output
|
Cluster assignments
Posterior probabilities
Probability densities
|
gptkbp:parameterEstimationMethod
|
gptkb:Expectation-Maximization_algorithm
|
gptkbp:relatedTo
|
gptkb:K-means_clustering
Hidden Markov models
Latent variable models
|
gptkbp:usedIn
|
Clustering
Density estimation
|
gptkbp:visualizes
|
Ellipses in 2D
|
gptkbp:bfsParent
|
gptkb:Scikit-learn
|
gptkbp:bfsLayer
|
5
|