Bisecting K-means

GPTKB entity

Statements (27)
Predicate Object
gptkbp:instanceOf gptkb:algorithm
gptkbp:advantage scalable to large datasets
better cluster quality than standard K-means
gptkbp:application document clustering
text clustering
gptkbp:complexity O(nkt)
gptkbp:differenceFromKMeans not all clusters split simultaneously
splits one cluster at a time
uses divisive approach
gptkbp:firstPublished 2000
Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
https://www.w3.org/2000/01/rdf-schema#label Bisecting K-means
gptkbp:input gptkb:dataset
number of clusters
gptkbp:output cluster centroids
cluster assignments
gptkbp:proposedBy Steinbach, Karypis, and Kumar
gptkbp:step applies K-means with k=2
repeatedly splits clusters into two
gptkbp:supportsAlgorithm hierarchical clustering
divisive clustering
gptkbp:usedFor cluster analysis
gptkbp:usedIn gptkb:machine_learning
data mining
gptkbp:variant gptkb:K-means_clustering
gptkbp:bfsParent gptkb:K-means_clustering
gptkbp:bfsLayer 7