Hierarchical Clustering

GPTKB entity

Statements (49)
Predicate Object
gptkbp:instanceOf Clustering Algorithm
gptkbp:advantage Computationally Expensive
Irreversible Merges or Splits
No Need to Specify Number of Clusters
Sensitive to Noise
gptkbp:application gptkb:Image_Segmentation
Social Network Analysis
Market Segmentation
Document Clustering
Gene Expression Analysis
gptkbp:canBe Deterministic
Non-deterministic
Bottom-Up
Top-Down
Hybrid Approaches
Distance Matrix
Hierarchical Agglomerative Clustering
Hierarchical Divisive Clustering
Linkage Criteria
Similarity Matrix
gptkbp:compatibleWith Pre-specified Number of Clusters
gptkbp:complexity O(n^3)
gptkbp:doesNotScaleWellWith Large Datasets
gptkbp:firstStepAgglomerative Each Point is a Cluster
gptkbp:firstStepDivisive All Points in One Cluster
gptkbp:hasType Agglomerative Clustering
Divisive Clustering
gptkbp:heldBy gptkb:Greedy_Algorithm
Unsupervised Learning Method
https://www.w3.org/2000/01/rdf-schema#label Hierarchical Clustering
gptkbp:improves Approximate Algorithms
Efficient Data Structures
Parallelization
gptkbp:linkageCriteria Average Linkage
Complete Linkage
Single Linkage
Ward's Method
gptkbp:mergesBasedOn Distance or Similarity
gptkbp:output Dendrogram
gptkbp:relatedTo gptkb:DBSCAN
Spectral Clustering
K-means Clustering
gptkbp:usedIn gptkb:Machine_Learning
gptkb:Bioinformatics
Data Mining
Image Analysis
gptkbp:visualizes Dendrogram
gptkbp:bfsParent gptkb:Unsupervised_Learning
gptkbp:bfsLayer 7