Statements (49)
Predicate | Object |
---|---|
gptkbp:instanceOf |
Clustering Algorithm
|
gptkbp:advantage |
Computationally Expensive
Irreversible Merges or Splits No Need to Specify Number of Clusters Sensitive to Noise |
gptkbp:application |
gptkb:Image_Segmentation
Social Network Analysis Market Segmentation Document Clustering Gene Expression Analysis |
gptkbp:canBe |
Deterministic
Non-deterministic Bottom-Up Top-Down Hybrid Approaches Distance Matrix Hierarchical Agglomerative Clustering Hierarchical Divisive Clustering Linkage Criteria Similarity Matrix |
gptkbp:compatibleWith |
Pre-specified Number of Clusters
|
gptkbp:complexity |
O(n^3)
|
gptkbp:doesNotScaleWellWith |
Large Datasets
|
gptkbp:firstStepAgglomerative |
Each Point is a Cluster
|
gptkbp:firstStepDivisive |
All Points in One Cluster
|
gptkbp:hasType |
Agglomerative Clustering
Divisive Clustering |
gptkbp:heldBy |
gptkb:Greedy_Algorithm
Unsupervised Learning Method |
https://www.w3.org/2000/01/rdf-schema#label |
Hierarchical Clustering
|
gptkbp:improves |
Approximate Algorithms
Efficient Data Structures Parallelization |
gptkbp:linkageCriteria |
Average Linkage
Complete Linkage Single Linkage Ward's Method |
gptkbp:mergesBasedOn |
Distance or Similarity
|
gptkbp:output |
Dendrogram
|
gptkbp:relatedTo |
gptkb:DBSCAN
Spectral Clustering K-means Clustering |
gptkbp:usedIn |
gptkb:Machine_Learning
gptkb:Bioinformatics Data Mining Image Analysis |
gptkbp:visualizes |
Dendrogram
|
gptkbp:bfsParent |
gptkb:Unsupervised_Learning
|
gptkbp:bfsLayer |
7
|