gptkbp:instanceOf
|
gptkb:algorithm
|
gptkbp:category
|
density-based clustering
|
gptkbp:compatibleWith
|
number of clusters as input
|
gptkbp:complexity
|
O(n log n) with spatial index
O(n^2) without spatial index
|
gptkbp:detects
|
gptkb:music
arbitrarily shaped clusters
|
gptkbp:fullName
|
gptkb:Density-Based_Spatial_Clustering_of_Applications_with_Noise
|
https://www.w3.org/2000/01/rdf-schema#label
|
DBSCAN
|
gptkbp:implementedIn
|
gptkb:ELKI
gptkb:MATLAB
gptkb:scikit-learn
R
|
gptkbp:introduced
|
gptkb:Hans-Peter_Kriegel
gptkb:Jörg_Sander
gptkb:Martin_Ester
gptkb:Xiaowei_Xu
|
gptkbp:introducedIn
|
1996
|
gptkbp:limitation
|
difficulty with clusters of varying density
not suitable for high-dimensional data
sensitive to parameter selection
|
gptkbp:openSource
|
yes
|
gptkbp:parameter
|
epsilon (eps)
minimum points (minPts)
|
gptkbp:publishedIn
|
gptkb:Proceedings_of_the_2nd_International_Conference_on_Knowledge_Discovery_and_Data_Mining_(KDD-96)
|
gptkbp:relatedTo
|
gptkb:HDBSCAN
gptkb:K-means
gptkb:OPTICS
|
gptkbp:usedFor
|
outlier detection
data clustering
unsupervised machine learning
|
gptkbp:bfsParent
|
gptkb:Scikit-learn
|
gptkbp:bfsLayer
|
5
|