Graph Attention Networks

GPTKB entity

Statements (56)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:application Social network analysis
Recommendation systems
Knowledge graph completion
Molecular property prediction
gptkbp:author gptkb:Yoshua_Bengio
Lev Barenboim
Petar Veličković
Wilker Aziz
gptkbp:benefits Computationally intensive
Focuses on important nodes
Handles varying node degrees
Requires careful tuning of hyperparameters
gptkbp:contribution Enhanced interpretability of node representations
Improved performance on benchmark datasets
Introduced attention mechanism to GNNs
gptkbp:designed_for Graph-structured data
gptkbp:graph_type Undirected graphs
Directed graphs
Weighted graphs
Unweighted graphs
https://www.w3.org/2000/01/rdf-schema#label Graph Attention Networks
gptkbp:input_output Node embeddings
Graph embeddings
Node features
Edge features
gptkbp:introduced_in gptkb:2018
gptkbp:is_a_framework_for gptkb:Tensor_Flow
gptkb:Py_Torch
gptkbp:key_feature Attention mechanism
Node representation learning
Scalability to large graphs
gptkbp:layer_type Activation layer
Attention layer
Feedforward layer
Normalization layer
gptkbp:performance Accuracy
F1 score
AUC-ROC
gptkbp:related_algorithm gptkb:Cheb_Net
gptkb:Graph_SAGE
Graph Isomorphism Network
GATv2
gptkbp:related_to Deep learning
Neural networks
Graph Convolutional Networks
gptkbp:training Supervised learning
Semi-supervised learning
Unsupervised learning
gptkbp:use_case Anomaly detection
Link prediction
Node classification
Community detection
Graph classification
gptkbp:bfsParent gptkb:Thomas_Kipf
gptkbp:bfsLayer 5