gptkbp:instanceOf
|
gptkb:convolutional_neural_network
|
gptkbp:abbreviation
|
gptkb:GAT
|
gptkbp:activatedBy
|
gptkb:ELU
|
gptkbp:application
|
graph classification
link prediction
node classification
|
gptkbp:architecture
|
multi-head attention
layer stacking
|
gptkbp:attentionMechanism
|
learns weights for neighbors
|
gptkbp:benchmarkDatasets
|
gptkb:Cora
gptkb:Citeseer
Pubmed
|
gptkbp:category
|
gptkb:artificial_intelligence
graph representation learning
|
gptkbp:citation
|
over 10,000 (as of 2024)
|
gptkbp:codeAvailable
|
https://github.com/PetarV-/GAT
|
gptkbp:contribution
|
attention mechanism for graph-structured data
handles graphs with varying neighborhood sizes
improved performance on node classification
node-level attention
|
gptkbp:field
|
gptkb:machine_learning
graph neural networks
|
gptkbp:handles
|
inductive learning
transductive learning
|
https://www.w3.org/2000/01/rdf-schema#label
|
Graph Attention Networks
|
gptkbp:input
|
adjacency matrix
node features
|
gptkbp:inspiredBy
|
attention mechanism
|
gptkbp:introduced
|
gptkb:Yoshua_Bengio
gptkb:Adriana_Romero
gptkb:Arantxa_Casanova
gptkb:Guillem_Cucurull
gptkb:Petar_Veličković
gptkb:Pietro_Liò
|
gptkbp:introducedIn
|
2017
|
gptkbp:lossFunction
|
cross-entropy
|
gptkbp:mainPaperTitle
|
gptkb:Graph_Attention_Networks
|
gptkbp:mainPaperURL
|
https://arxiv.org/abs/1710.10903
|
gptkbp:openSource
|
gptkb:TensorFlow_GNN
gptkb:PyTorch_Geometric
DGL
|
gptkbp:output
|
node labels
node embeddings
|
gptkbp:platform
|
deep learning
|
gptkbp:publishedIn
|
gptkb:ICLR_2018
|
gptkbp:relatedTo
|
gptkb:GraphSAGE
gptkb:Graph_Convolutional_Networks
|
gptkbp:type
|
self-attention
|
gptkbp:usedIn
|
biological network analysis
recommendation systems
social network analysis
chemoinformatics
|
gptkbp:bfsParent
|
gptkb:Nvidia_cuGraph
gptkb:Graph_Attention_Network
|
gptkbp:bfsLayer
|
6
|