Statements (59)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:television_channel
|
gptkbp:bfsLayer |
3
|
gptkbp:bfsParent |
gptkb:television_channel
|
gptkbp:allows |
sensitivity to noise
requires graph structure |
gptkbp:applies_to |
semi-supervised learning
graph classification |
gptkbp:based_on |
gptkb:Chebyshev_polynomials
|
gptkbp:developed_by |
Michele Defferrard
Xavier Bresson |
gptkbp:has_achievements |
state-of-the-art results
|
gptkbp:has_programs |
recommendation systems
social network analysis biological networks |
https://www.w3.org/2000/01/rdf-schema#label |
Cheb Net
|
gptkbp:improves |
spectral graph convolution
|
gptkbp:is_adopted_by |
research institutions
startups industry applications tech companies |
gptkbp:is_challenged_by |
scalability issues
new architectures advancements in GN Ns |
gptkbp:is_compared_to |
gptkb:GCN
GAT |
gptkbp:is_evaluated_by |
Citeseer dataset
Cora dataset Pubmed dataset |
gptkbp:is_explored_in |
theses
numerous studies conference papers journal articles |
gptkbp:is_implemented_in |
gptkb:Graphics_Processing_Unit
gptkb:Py_Torch |
gptkbp:is_influenced_by |
signal processing
graph theory numerical analysis machine learning theory |
gptkbp:is_part_of |
gptkb:software_framework
deep learning |
gptkbp:is_related_to |
convolutional neural networks
spectral methods |
gptkbp:is_supported_by |
gptkb:publishing_company
gptkb:Research_Institute open-source implementations |
gptkbp:is_used_in |
link prediction
node classification graph generation graph-based learning tasks |
gptkbp:notable_for |
scalability
efficient computation theoretical foundation flexibility in architecture robustness to overfitting |
gptkbp:published_by |
gptkb:2016
|
gptkbp:requires |
graph Laplacian
|
gptkbp:suitable_for |
large graphs
|
gptkbp:uses |
localized filters
|
gptkbp:utilizes |
K-order Chebyshev polynomials
|