Cheb Net

GPTKB entity

Statements (59)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:based_on gptkb:Chebyshev_polynomials
gptkbp:developed_by Michele Defferrard
Xavier Bresson
gptkbp:has_achieved state-of-the-art results
gptkbp:has_applications_in recommendation systems
social network analysis
biological networks
gptkbp:has_limitations sensitivity to noise
requires graph structure
https://www.w3.org/2000/01/rdf-schema#label Cheb Net
gptkbp:improves spectral graph convolution
gptkbp:is_adopted_by research institutions
startups
industry applications
tech companies
gptkbp:is_applied_in semi-supervised learning
graph classification
gptkbp:is_challenged_by scalability issues
new architectures
advancements in GNNs
gptkbp:is_compared_to gptkb:GCN
GAT
gptkbp:is_evaluated_by Citeseer dataset
Cora dataset
Pubmed dataset
gptkbp:is_explored_in theses
numerous studies
conference papers
journal articles
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Py_Torch
gptkbp:is_influenced_by signal processing
graph theory
numerical analysis
machine learning theory
gptkbp:is_notable_for scalability
efficient computation
theoretical foundation
flexibility in architecture
robustness to overfitting
gptkbp:is_part_of gptkb:machine_learning
deep learning
gptkbp:is_related_to convolutional neural networks
spectral methods
gptkbp:is_supported_by gptkb:Publications
gptkb:scientific_community
open-source implementations
gptkbp:is_used_in link prediction
node classification
graph generation
graph-based learning tasks
gptkbp:published_in gptkb:2016
gptkbp:requires graph Laplacian
gptkbp:suitable_for large graphs
gptkbp:uses localized filters
gptkbp:utilizes K-order Chebyshev polynomials
gptkbp:bfsParent gptkb:neural_networks
gptkbp:bfsLayer 4