Graph SAGE

GPTKB entity

Statements (49)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:applies_to large-scale graphs
gptkbp:can_be_used_in recommendation systems
social network analysis
biological network analysis
knowledge graph completion
gptkbp:developed_by gptkb:Stanford_University
gptkbp:enables inductive learning
gptkbp:has_applications_in traffic prediction
image classification
anomaly detection
community detection
text classification
recommendation engines
link prediction
financial fraud detection
gptkbp:has_limitations requires careful tuning
computationally intensive for large graphs
depends on quality of node features
may overfit on small datasets
sensitive to noise
gptkbp:has_variants Graph SAGE with LSTM
Graph SAGE with attention
Graph SAGE with pooling
https://www.w3.org/2000/01/rdf-schema#label Graph SAGE
gptkbp:influenced_by Deep Walk
Node2 Vec
gptkbp:introduced_in gptkb:2017
gptkbp:is_compared_to gptkb:GCN
GAT
gptkbp:is_evaluated_by Citeseer dataset
Cora dataset
Pubmed dataset
Reddit dataset
ogbn-arxiv dataset
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Py_Torch
gptkbp:is_notable_for flexibility
scalability
ability to handle heterogeneous graphs
ability to incorporate node features
performance on unseen data
gptkbp:is_part_of graph representation learning
gptkbp:supports dynamic graphs
gptkbp:used_for node classification
gptkbp:uses sampling techniques
gptkbp:utilizes neighborhood aggregation
gptkbp:bfsParent gptkb:neural_networks
gptkbp:bfsLayer 4