Google Cloud AI Platform Pipelines
GPTKB entity
Statements (64)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:AI_technology
|
gptkbp:allows |
pipeline orchestration
|
gptkbp:developed_by |
gptkb:Google
|
gptkbp:enables |
automated model training
collaborative model development |
gptkbp:facilitates |
model deployment
|
https://www.w3.org/2000/01/rdf-schema#label |
Google Cloud AI Platform Pipelines
|
gptkbp:integrates_with |
Google Cloud services
|
gptkbp:is_accessible_by |
gptkb:Google_Cloud_Console
REST API gcloud command line tool |
gptkbp:is_available_for |
individual developers
enterprise users |
gptkbp:is_available_in |
multiple regions
|
gptkbp:is_compatible_with |
gptkb:XGBoost
gptkb:Tensor_Flow gptkb:scikit-learn gptkb:Py_Torch |
gptkbp:is_documented_in |
Google Cloud documentation
|
gptkbp:is_integrated_with |
gptkb:Big_Query
gptkb:Cloud_Functions gptkb:cloud_storage |
gptkbp:is_optimized_for |
gptkb:performance
|
gptkbp:is_part_of |
gptkb:Google_Cloud_Platform
Google Cloud AI ecosystem cloud-native solutions Google Cloud AI and ML services |
gptkbp:is_scalable |
large datasets
|
gptkbp:is_supported_by |
community forums
tutorials and guides Google support |
gptkbp:is_used_by |
data scientists
machine learning engineers |
gptkbp:is_used_for |
data preprocessing
data science projects model evaluation feature engineering real-time predictions model monitoring model retraining batch predictions production ML systems |
gptkbp:offers |
security features
visualization tools experiment tracking |
gptkbp:provides |
data lineage tracking
monitoring capabilities user-friendly interface automated testing end-to-end machine learning workflows reproducibility of experiments version control for models |
gptkbp:supports |
gptkb:Kubeflow_Pipelines
custom components data validation hyperparameter tuning data augmentation ensemble methods multi-cloud deployments A/ B testing CI/ CD for ML models |
gptkbp:utilizes |
Docker containers
|
gptkbp:bfsParent |
gptkb:Google
|
gptkbp:bfsLayer |
4
|