gptkbp:instanceOf
|
gptkb:organization
|
gptkbp:alsoKnownAs
|
gptkb:normal_distribution
|
gptkbp:application
|
statistical analysis
hypothesis testing
modeling measurement errors
statistical inference
|
gptkbp:centralLimitTheorem
|
limit distribution
|
gptkbp:characteristic
|
exp(iμt - 0.5σ^2t^2)
|
gptkbp:conjugatePriorFor
|
mean of normal distribution
|
gptkbp:cumulativeDistributionFunction
|
Φ(x) = 0.5[1 + erf((x-μ)/(σ√2))]
|
gptkbp:describedBy
|
mean
variance
|
gptkbp:entropy
|
0.5*ln(2πeσ^2)
|
gptkbp:firstDescribed
|
18th century
|
gptkbp:hasFeature
|
mean = 0, variance = 1
|
gptkbp:hasSpecialCase
|
gptkb:exponential_family
gptkb:location-scale_family
gptkb:elliptical_distribution
|
https://www.w3.org/2000/01/rdf-schema#label
|
Gaussian distribution
|
gptkbp:infiniteDivisibility
|
yes
|
gptkbp:kurtosis
|
3
|
gptkbp:maximumEntropy
|
for given mean and variance
|
gptkbp:meanSymbol
|
μ
|
gptkbp:medium
|
μ
|
gptkbp:mode
|
μ
|
gptkbp:momentGeneratingFunction
|
exp(μt + 0.5σ^2t^2)
|
gptkbp:moments
|
all moments exist
|
gptkbp:namedAfter
|
gptkb:Carl_Friedrich_Gauss
|
gptkbp:parameter
|
mean
standard deviation
variance
|
gptkbp:pdfShape
|
bell curve
|
gptkbp:probabilityDensityFunction
|
f(x) = (1/(σ√(2π))) * exp(- (x-μ)^2 / (2σ^2))
|
gptkbp:relatedTo
|
gptkb:standard_normal_distribution
gptkb:chi-squared_distribution
gptkb:log-normal_distribution
gptkb:multivariate_normal_distribution
error function
|
gptkbp:skewness
|
0
|
gptkbp:standardDeviationSymbol
|
σ
|
gptkbp:standardFormName
|
gptkb:standard_normal_distribution
|
gptkbp:sumOfNormals
|
gptkb:normal_distribution
|
gptkbp:supports
|
x ∈ ℝ
|
gptkbp:symmetry
|
symmetric about mean
|
gptkbp:usedIn
|
gptkb:machine_learning
gptkb:natural_sciences
gptkb:signal_processing
engineering
finance
statistics
|
gptkbp:varianceSymbol
|
σ^2
|
gptkbp:bfsParent
|
gptkb:normal_distribution
|
gptkbp:bfsLayer
|
4
|