Statements (52)
Predicate | Object |
---|---|
gptkbp:instanceOf |
statistical analysis
|
gptkbp:assumes |
data points are generated from a mixture of Gaussians
|
gptkbp:basedOn |
gptkb:Gaussian_distribution
|
gptkbp:canBe |
data compression
image segmentation speech modeling anomaly detection background subtraction |
gptkbp:canBeFittedBy |
gptkb:Markov_chain_Monte_Carlo
Bayesian inference maximum likelihood estimation variational inference |
gptkbp:canBeRegularizedBy |
penalized likelihood
prior distributions |
gptkbp:componentDistribution |
gptkb:univariate_normal_distribution
gptkb:multivariate_normal_distribution |
gptkbp:estimatedCost |
expectation-maximization algorithm
|
gptkbp:extendsTo |
Bayesian Gaussian mixture model
infinite Gaussian mixture model |
gptkbp:field |
gptkb:signal_processing
computer vision speech recognition bioinformatics pattern recognition unsupervised learning |
gptkbp:hasModel |
multimodal distributions
|
https://www.w3.org/2000/01/rdf-schema#label |
Gaussian mixture model
|
gptkbp:introduced |
gptkb:Karl_Pearson
|
gptkbp:introducedIn |
1894
|
gptkbp:limitation |
assumes Gaussian components
can get stuck in local optima sensitive to initialization |
gptkbp:output |
cluster assignments
likelihood of data probability of cluster membership |
gptkbp:parameter |
mean
covariance mixture weights |
gptkbp:relatedTo |
Markov chain
k-means clustering finite mixture model soft clustering |
gptkbp:usedFor |
density estimation
clustering |
gptkbp:usedIn |
gptkb:machine_learning
statistics |
gptkbp:visualizes |
scatter plots
contour plots |
gptkbp:bfsParent |
gptkb:Gaussian_model
gptkb:Finite_mixture_models gptkb:Mixture_of_factor_analyzers |
gptkbp:bfsLayer |
7
|